Neighbor Joining (NJ) review:

We consider a dissimilarity map $d : X \times X \to \mathbb{R}$. Now for each $x \in X$ compute

$$u(x) = \frac{1}{|X| - 2} \sum_{y \in X} d(x, y).$$

Let $Q(x, y) = d(x, y) - u(x) - u(y)$. Find a pair a, b with $Q(a, b)$ minimized. Join them, and call the new vertex $a \cdot b$. Set $d(a \cdot b, a) = \frac{1}{2}(d(a, b) + u(a) - u(b))$ and $d(a \cdot b, b) = \frac{1}{2}(d(a, b) + u(b) - u(a))$. Let $d'(y, x) = d(y, x)$ for all $y, x \neq a, b$ and $d'(a \cdot b, x) = \frac{1}{2}(d(a, x) + d(b, x) - d(a, b))$, and let $X' = X \setminus \{a, b\} \cup \{a \cdot b\}$. Iterate the above procedure using the pair (X', d').

Theorem: Suppose d is a tree metric $d = d(T, w)$, then the Q-criterion picks a cherry of T, and d' is the induced tree metric on T'.

Proof. Let d be a tree metric. We first observe that if d is a tree metric and $c : X \to \mathbb{R}$ is a function, then $d'(x, y) := d(x, y) + c(x) + c(y)$ is a tree metric, provided it is a metric. (We will require $-c(x) \leq w$ (pendant edge going to x).

Furthermore, this scaling does not affect NJ selection criterion. We will have

$$Q'(x, y) = Q'(x, y) + \frac{2}{|X| - 2} \sum_{z \in X} c(z).$$

So the pair a, b minimizing Q is the same pair a, b minimizing Q'. Thus, we may assume that all pendant edges have weight 0.

Claim (Bryant 2005): $x' \in X$ is a possible maximizer of the function $u(x)$ if and only if x' is part of some cherry. Because we don’t know how to prove this claim, we consider the example on the next page, which makes the claim fell at least plausible:
Then

\[
\begin{align*}
 u(1) &= u(2) = 6a + 5b + 2c + 3d + 2e \\
 u(3) &= u(4) = 2a + 3b + 6c + 3d + 2e \\
 u(5) &= 2a + 3b + 2c + 5d + 2e \\
 u(6) &= u(7) = 2a + 3b + 2c + 5d + 6e \\
 u(8) &= 2a + 5b + 2c + 3d + 2e.
\end{align*}
\]

Assuming the claim, we suppose that a pair \(c, d\) is not a cherry. Then \(d(c, d) > 0\). On the other hand, if \(a, b\) is a cherry such that \(u(a) = u(b)\) is the maximum value for \(u\), then \(Q(c, d) = d(c, d) - u(c) - u(d)\) and \(Q(a, b) = d(a, b) - u(a) - u(b)\). Now \(d(c, d) > 0 = d(a, b)\) and \(u(c) \leq u(a)\) and \(u(d) \leq u(b)\), from which it follows that \(Q(c, d) > Q(a, b)\). Hence, the minimizer must be a cherry.

Theorem (Attesson): Let \(d(T, w)\) be a tree metric. Let \(\varepsilon = \min_{e \in T} w(e)\). Suppose \(d\) is a tree a metric with \(||d(T, w) - d||_\infty < \frac{\varepsilon}{2}\). Then \(NJ\) applied to \(d\) returns a tree metric \(\hat{d}(T', w')\) such that \(T = T'\).

Proof. Omitted.

2
There exists a philogenetic problem that is not NP-Hard!! Here it is: Minimizing $||\cdot||_\infty$ for $\epsilon T(X)$ (though for $T(X)$ it is NP-hard). Given a dissimilarity map $\delta : X \times X \rightarrow \mathbb{R}$, we will find an ultrametric d such that $||\delta - d||_\infty$ is minimized.

Let K_X be the complete graph with vertex set X, and let $w(x, y) = \delta(x, y)$. For a path P in K_X define $w(P) = \max_{e \in P} w(e)$, and define $\delta_u : X \times X \rightarrow \mathbb{R}$ by

$$
\delta_u(x, y) = \min_{\text{path } p \text{ connecting } x, y \text{ in } K_X} x(P).
$$

Then δ_u is called the subdominant ultrametric defined by δ.

Theorem: Let δ be a dissimilarity map on X. Then

1. δ_u is an ultrametric
2. $\delta_u(x, y) \leq \delta(x, y) \forall x, y$
3. If δ' is an ultrametric s.t. $\delta'(x, y) \leq \delta(x, y) \forall x, y$ then $\delta'(x, y) \leq \delta_u(x, y) \forall x, y$.
4. If δ is an ultrametric, then $\delta = \delta_u$.

Proof.

1. Let P_1 be a path from x to y such that $w(P) = \delta_u(x,y)$. Let P_2 be a path from y to z such that $w(P_2) = \delta_u(y,z)$. Then P_1P_2 is a path from x to z, $w(P_1P_2) = \max\{\delta_u(x, y), \delta_u(y, z)\} \geq \delta_u(x, z)$.

2. We observe that $w(x, y) = \delta(x, y)$ is a path from x to y of weight $\delta(x, y) = \min$ over all paths $\delta_u(x, y)$.

3. Let δ' be an ultrametric such that $\delta'(x, y) \leq \delta(x, y) \forall x, y$. Let P be the path from x to y such that $\delta_u(x, y) = w(P)$. Write $P = V_0V_1 \cdots V_t$ where $x = V_0$ and $y = V_t$. Then

$$
\delta(x, y) \leq \max\{\delta'(x, v_{i-1}), \delta'(v_{t-1}, y)\} \leq \max\{\max\{\delta'(x, v_{i-2}), \delta'(v_{t-2}, v_{t-1})\}, (\delta'(v_{t-1}, y))\} \leq \max_{i \in [t-1]} \{\delta'(v_i, v_{i+1})\} = w(P) = \delta_u(x, y)
$$

4. By (2) $\delta_u(x, y) \leq \delta(x, y)$, and by (3) $\delta_u(x, y) \geq \delta(x, y)$. Then $\delta_u = \delta$.

We note that δ_u can be computed in polynomial time! Let G be a graph, and $w : V \rightarrow \mathbb{R}$ a weight function. A spanning tree of G is a subset of the edges that form a tree and contain all vertices. Let $T \subseteq G$ be a spanning tree. Then $w(T) = \sum_{e \in T} w(e)$. A minimal weight spanning tree is a spanning tree of minimal weight.

Theorem (Kruskal): The greedy algorithm finds a minimal weight spanning tree.

Proof. Omitted.
Example:

Proposition: Let δ be a dissimilarity map of X, T a minimal weight spanning tree of K_X. Then $\forall x, y \delta_T(x, y) = \delta_u(x, y)$ and $\delta_T(x, y) = w$(unique path x to y in T).

Proof. Omitted.

Definition: For $\varepsilon \in \mathbb{R}$, let $\delta^+\varepsilon(x, y) = \delta(x, y) + \varepsilon \, \forall x, y$.

Theorem: Let δ be a dissimilarity map on X, and let $\varepsilon = \frac{||\delta - \delta_u||_\infty}{2}$. Then $\delta^+\varepsilon$ is an L_∞ optimal ultrametric for δ and $||\delta^+\varepsilon - \delta||_\infty = \varepsilon$.

Proof. We note that $\delta_u < \delta$ by a previous theorem, allowing for $||\delta^+\varepsilon - \delta||_\infty = \varepsilon$. Now since $\delta_u(x, y) \leq \delta(x, y)$, there exists x_0, y_0 such that $\delta_u(x_0, y_0) = \delta(x, y) - 2\varepsilon$ and so $\delta^+\varepsilon = \delta_u(x_0, y_0) + \varepsilon = \delta(x, y) - \varepsilon$.

Suppose δ' is L_∞ optimal. Then $||\delta' - \delta||_\infty \leq \varepsilon$. Then $\forall x, y \in X$, $\delta'(x, y) \leq \delta^+\varepsilon(x, y)$ (if not, then $\delta'(x, y) > \delta(x, y) + \varepsilon$ implying δ' not optimal). Hence $\delta'(x, y) \leq \delta^+\varepsilon(x, y)$.

Then we have $\delta'(x_0, y_0) \leq \delta^+\varepsilon(x_0, y_0) = \delta_u(x_0, y_0) + \varepsilon = \delta(x_0, y_0) - \varepsilon$, so $||\delta' - \delta||_\infty \geq \varepsilon$, and it follows that $\delta^+\varepsilon$ is optimal.

\square