Chapter 6
Linear Independence
A set of vectors \(\{v_1, v_2, \ldots, v_p \} \) is **linearly dependent** if we can express the zero vector, \(0 \), as a *non-trivial* linear combination of the vectors.

\[
\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_p v_p = 0
\]

(non-trivial means that all of the \(\alpha_i \)'s are not 0).
A set of vectors \(\{v_1, v_2, \ldots, v_p\} \) is **linearly dependent** if we can express the zero vector, \(\mathbf{0} \), as a *non-trivial* linear combination of the vectors:

\[
\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_p v_p = \mathbf{0}
\]

(non-trivial means that all of the \(\alpha_i \)'s are not 0).

The set \(\{v_1, v_2, \ldots, v_p\} \) is **linearly independent** if the above equation has only the trivial solution, \(\alpha_1 = \alpha_2 = \cdots = \alpha_p = 0 \).
Linear Dependence - Example

The vectors \(\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \), \(\mathbf{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \), and \(\mathbf{v}_3 = \begin{pmatrix} 3 \\ 6 \\ 7 \end{pmatrix} \) are linearly dependent because

\[\mathbf{v}_3 = 2\mathbf{v}_1 + \mathbf{v}_2 \]
The vectors $v_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, and $v_3 = \begin{pmatrix} 3 \\ 6 \\ 7 \end{pmatrix}$ are linearly dependent because

$$v_3 = 2v_1 + v_2$$

or, equivalently, because

$$2v_1 + v_2 - v_3 = 0$$
The vectors $v_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, and $v_3 = \begin{pmatrix} 3 \\ 6 \\ 7 \end{pmatrix}$ are linearly dependent because

$$v_3 = 2v_1 + v_2$$

or, equivalently, because

$$2v_1 + v_2 - v_3 = 0$$

PerfectMulticollinearity!
Example - Determining Linear Independence

\(\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \) and \(\mathbf{v}_3 = \begin{pmatrix} 3 \\ 6 \\ 7 \end{pmatrix} \)

How can we tell if these vectors are linearly independent?

- Want to know if there are coefficients \(\alpha_1, \alpha_2, \alpha_3 \) such that

\[
\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = 0
\]

- This creates a linear system!

\[
\begin{pmatrix} 1 & 1 & 3 \\ 2 & 2 & 6 \\ 2 & 3 & 7 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
\]

- Just use Gauss-Jordan elimination to find out that

\[
\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}
\]

is one possible solution (there are free variables)!
For a set of vectors \(\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} \),

- If the only solution was the trivial solution,
 \[
 \begin{pmatrix}
 \alpha_1 \\
 \alpha_2 \\
 \alpha_3
 \end{pmatrix}
 =
 \begin{pmatrix}
 0 \\
 0 \\
 0
 \end{pmatrix}
 \]
 Then we’d know that \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \) are linearly independent.
- \(\implies \) no free variables! Gauss-Jordan elimination on the vectors results in the identity matrix:
 \[
 \begin{pmatrix}
 1 & 0 & 0 & | & 0 \\
 0 & 1 & 0 & | & 0 \\
 0 & 0 & 1 & | & 0
 \end{pmatrix}
 \]
The sum from our definition,

\[\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_p v_p = 0, \]

is simply a matrix-vector product

\[V\alpha = 0 \]

where \(V = (v_1 | v_2 | \ldots | v_p) \) and \(\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_p \end{pmatrix} \).
The sum from our definition,

$$\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_p v_p = 0,$$

is simply a matrix-vector product

$$V\alpha = 0$$

where $V = (v_1 \mid v_2 \mid \cdots \mid v_p)$ and $\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_p \end{pmatrix}$

So all we need to do is determine whether the system of equations $V\alpha = 0$ has any non-trivial solutions.
If a set of vectors (think: *variables*) is not linearly independent, then the matrix that contains those vectors as columns (think: *data matrix*) is not full rank!

The **rank** of a matrix can be defined as the number of linearly independent columns (or rows) in that matrix.

- **# of linearly independent rows = # of linearly independent columns**

In most data - **# of rows > # of columns**.

So the maximum rank of a matrix is the **# of columns** - an \(n \times m \) full rank matrix has \(rank = m \).
Linear Independence

Let A be an $n \times n$ matrix. The following statements are equivalent. (If one of these statements is true, then all of these statements are true)

- A is invertible (A^{-1} exists)
- A has full rank ($\text{rank}(A) = n$)
- The columns of A are linearly independent
- The rows of A are linearly independent
- The system $Ax = b$ has a unique solution
- $Ax = 0 \Rightarrow x = 0$
- A is nonsingular

$\xrightarrow{\text{Gauss-Jordan}} I$
Let A be an $n \times n$ matrix. The following statements are equivalent. (If one of these statements is true, then all of these statements are true)

- A is invertible (A^{-1} exists)
- A has full rank ($\text{rank}(A) = n$)
- The columns of A are linearly independent
- The rows of A are linearly independent
- The system $Ax = b$ has a unique solution
- $Ax = 0 \implies x = 0$
- A is nonsingular
- A Gauss–Jordan $\rightarrow I$
Let \(\mathbf{a} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} \) and \(\mathbf{b} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \).

- Are the vectors \(\mathbf{a} \) and \(\mathbf{b} \) linearly independent?
Let \(\mathbf{a} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} \) and \(\mathbf{b} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \).

- Are the vectors \(\mathbf{a} \) and \(\mathbf{b} \) linearly independent?

- What is the rank of the matrix \(\mathbf{A} = (\mathbf{a} | \mathbf{b}) \)?
Check your understanding

Let \(\mathbf{a} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} \) and \(\mathbf{b} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \).

- Are the vectors \(\mathbf{a} \) and \(\mathbf{b} \) linearly independent?

- What is the rank of the matrix \(\mathbf{A} = (\mathbf{a}|\mathbf{b}) \)?

- Determine whether or not the vector \(\begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \) is a linear combination of the vectors \(\mathbf{a} \) and \(\mathbf{b} \).
Let \(\mathbf{a} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} \) and \(\mathbf{b} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \).

- Are the vectors \(\mathbf{a} \) and \(\mathbf{b} \) linearly independent?

 Yes. The equation \(\alpha_1 \mathbf{a} + \alpha_2 \mathbf{b} = \mathbf{0} \) has only the trivial solution.

What is the rank of the matrix \(\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \)? Is \(\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \) full rank?

The rank of \(\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \) is 2 because there are two linearly independent columns.

\(\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \) is full rank.

Determine whether or not the vector \(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \) is a linear combination of the vectors \(\mathbf{a} \) and \(\mathbf{b} \).

Row reduce the augmented matrix:

\[
\begin{pmatrix}
1 & 3 & 1 \\
3 & 0 & 0 \\
4 & 1 & 1 \\
\end{pmatrix}
\]

to find that the system is inconsistent.

\(\Rightarrow \) No.
Let \(\mathbf{a} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} \) and \(\mathbf{b} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \).

- Are the vectors \(\mathbf{a} \) and \(\mathbf{b} \) linearly independent?
 Yes. The equation \(\alpha_1 \mathbf{a} + \alpha_2 \mathbf{b} = \mathbf{0} \) has only the trivial solution.

- What is the rank of the matrix \(\mathbf{A} = (\mathbf{a} | \mathbf{b}) \)? Is \(\mathbf{A} \) full rank?
 \(\text{rank}(\mathbf{A}) = 2 \) because there are two linearly independent columns. \(\mathbf{A} \) is full rank.
Let \(\mathbf{a} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} \) and \(\mathbf{b} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \).

- Are the vectors \(\mathbf{a} \) and \(\mathbf{b} \) linearly independent?
 Yes. The equation \(\alpha_1 \mathbf{a} + \alpha_2 \mathbf{b} = \mathbf{0} \) has only the trivial solution.

- What is the rank of the matrix \(\mathbf{A} = (\mathbf{a} \, | \, \mathbf{b}) \)? Is \(\mathbf{A} \) full rank?
 \(\text{rank}(\mathbf{A}) = 2 \) because there are two linearly independent columns. \(\mathbf{A} \) is full rank.

- Determine whether or not the vector \(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \) is a linear combination of the vectors \(\mathbf{a} \) and \(\mathbf{b} \).
 Row reduce the augmented matrix:
 \[
 \begin{pmatrix}
 1 & 3 & 1 \\
 3 & 0 & 0 \\
 4 & 1 & 1 \\
 \end{pmatrix}
 \]
 to find that the system is inconsistent. \(\implies \) No.
Why the fuss?

If our design matrix \mathbf{X} is not full rank, then the matrix from the normal equations, $\mathbf{X}^T\mathbf{X}$ is also not full rank.

- $\mathbf{X}^T\mathbf{X}$ does not have an inverse.
- The normal equations do not have a unique solution!
- β’s not uniquely determined.
- Infinitely many solutions.
- #PerfectMulticollinearity
- Breaks a fundamental assumption of MLR.
Often times we’ll run into a situation where variables are linearly independent, but only barely so. Take, for example, the following system of equations:

\[\beta_1 x_1 + \beta_2 x_2 = y \]

where

\[x_1 = \begin{pmatrix} 0.835 \\ 0.333 \end{pmatrix}, \quad x_2 = \begin{pmatrix} 0.667 \\ 0.266 \end{pmatrix}, \quad y = \begin{pmatrix} 0.168 \\ 0.067 \end{pmatrix} \]

This system has an exact solution, \(\beta_1 = 1 \) and \(\beta_2 = -1 \).
\[\beta_1 x_1 + \beta_2 x_2 = y \]

where

\[
x_1 = \begin{pmatrix} 0.835 \\ 0.333 \end{pmatrix} \quad x_2 = \begin{pmatrix} 0.667 \\ 0.266 \end{pmatrix} \quad y = \begin{pmatrix} 0.168 \\ 0.067 \end{pmatrix}
\]

If we change this system only slightly, so that \(y = \begin{pmatrix} 0.168 \\ 0.066 \end{pmatrix} \) then

the exact solution changes drastically to

\[\beta_1 = -666 \quad \text{and} \quad \beta_2 = 834 \]

The system is **unstable** because the columns of the matrix are so close to being linearly dependent!
Symptoms of Severe Multicollinearity

- Large fluctuations or flips in sign of the coefficients when a collinear variable is added into the model.
- Changes in significance when additional variables are added.
- Overall F-test shows significance when the individual t-tests show none.

These symptoms are bad enough on their own, but the real consequence of this type of behavior is that seen in the previous example. A very small change in the underlying system of equations (like a minuscule change in a target value y_i) can produce dramatic changes to our parameter estimates!