Chapter 7
Norms and Distance Measures
Norms are functions which measure the magnitude or length of a vector.

They are commonly used to determine similarities between observations by measuring the distance between them.
 - Find groups of similar observations/customers/products.
 - Classify new objects into known groups.

There are many ways to define both distance and similarity between vectors and matrices!
A Norm, or distance metric, is a function that takes a vector as input and returns a scalar quantity \(f : \mathbb{R}^n \rightarrow \mathbb{R} \). A vector norm is typically denoted by two vertical bars surrounding the input vector, \(\|x\| \), to signify that it is not just any function, but one that satisfies the following criteria:

1. If \(c \) is a scalar, then
 \[
 \|cx\| = |c| \|x\|
 \]

2. The triangle inequality:
 \[
 \|x + y\| \leq \|x\| + \|y\|
 \]

3. \(\|x\| = 0 \) if and only if \(x = 0 \).
4. \(\|x\| \geq 0 \) for any vector \(x \)
The **Euclidean Norm**, also known as the 2-norm simply measures the Euclidean length of a vector (i.e. a point’s distance from the origin). Let \(\mathbf{x} = (x_1, x_2, \ldots, x_n) \). Then,

\[
\| \mathbf{x} \|_2 = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}
\]

- \(\| \mathbf{x} \|_2 = \sqrt{\mathbf{x}^T \mathbf{x}} \).
- Often write \(\| \star \| \) rather than \(\| \star \|_2 \) to denote the 2-norm, as it is by far the most commonly used norm.
- This is merely the “distance formula” from undergraduate mathematics, measuring the distance between the point \(\mathbf{x} \) and the origin.
Euclidean Norm (Euclidean Distance)

\[\|x\| = \sqrt{a^2 + b^2} \]

\[x = \begin{pmatrix} a \\ b \end{pmatrix} \]
Why do we care about the length of a vector? **Two Reasons**

- We will often want to make all vectors the same length (A form of standardization).
- The length of the vector \(x - y \) gives the distance between \(x \) and \(y \).
Euclidean Distance

\[\|x - y\| \]
Euclidean Distance

\[\mathbf{x} - \mathbf{y} = \begin{pmatrix} x_1 - y_1 \\ x_2 - y_2 \\ \vdots \\ x_n - y_n \end{pmatrix} \]

\[\| \mathbf{x} - \mathbf{y} \| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \cdots + (x_n - y_n)^2} \]

Square Root Sum of Squared Differences between the two vectors.
Suppose I have two vectors in 3-space:

\[\mathbf{x} = (1, 1, 1) \text{ and } \mathbf{y} = (1, 0, 0) \]

Then the magnitude of \(\mathbf{x} \) (i.e., its length or distance from the origin) is

\[\| \mathbf{x} \|_2 = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \]

and the magnitude of \(\mathbf{y} \) is

\[\| \mathbf{y} \|_2 = \sqrt{1^2 + 0^2 + 0^2} = 1 \]

and the distance between point \(\mathbf{x} \) and point \(\mathbf{y} \) is

\[\| \mathbf{x} - \mathbf{y} \|_2 = \sqrt{(1 - 1)^2 + (1 - 0)^2 + (1 - 0)^2} = \sqrt{2}. \]
In this course, we will regularly make use of vectors with length/magnitude equal to 1. These vectors are called **unit vectors**. For example,

$$
e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

are all **unit vectors** because

$$\|e_1\| = \|e_2\| = \|e_3\| = 1.$$

Simple enough!
Creating a unit vector

If we have some random vector, \(\mathbf{x} \), we can always transform it into a unit vector by dividing every element by \(\| \mathbf{x} \| \).

For example, take

\[
\mathbf{x} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}
\]

Then, \(\| \mathbf{x} \| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \). The new vector,

\[
\mathbf{u} = \frac{1}{5} \begin{pmatrix} 3 \\ 4 \end{pmatrix}
\]

is a unit vector:

\[
\| \mathbf{u} \| = \sqrt{\left(\frac{3}{5} \right)^2 + \left(\frac{4}{5} \right)^2} = \sqrt{\frac{9}{25} + \frac{16}{25}} = 1
\]

Note that this implies \(\mathbf{u}^T \mathbf{u} = 1 \)
How else can we measure distance?

- $\| \star \|_1$ (1-norm) a.k.a. Taxicab metric, Manhattan Distance, City block distance
- $\| \star \|_\infty$ (∞-norm) a.k.a Max norm, Supremum norm, Uniform Norm
- Mahalanobis Distance (A probabilistic distance that accounts for the variance of variables)
The 1-norm, $\| \mathbf{x} \|_1$, is defined as

$$\| \mathbf{x} \|_1 = |x_1| + |x_2| + |x_3| + \cdots + |x_n|$$

This is often called the city block norm because it measures the distance between points along a rectangular grid (as a taxicab must travel on the streets of Manhattan).
\[\|x\|_1 = |x_1| + |x_2| + |x_3| + \cdots + |x_n| \]

This is often called the city block norm because it measures the distance between points along a rectangular grid (as a taxicab must travel on the streets of Manhattan).

So the 1 norm distance between two observations/vectors would be

\[\|x - y\|_1 = |x_1 - y_1| + |x_2 - y_2| + \cdots + |x_n - y_n| \]
The infinity norm is sometimes called "max distance":

$$\|x\|_\infty = \max\{|x_1|, |x_2|, |x_3|, \ldots, |x_n|\}$$

So the max distance between points/vectors x and y would be

$$\max\{|x_1 - y_1|, |x_2 - y_2|, |x_3 - y_3|, \ldots, |x_n - y_n|\}$$
Mahalanobis Distance

Takes into account the distribution of the data, often times comparing distributions of different groups.
Let’s take a quick look at an application, which we will probably explore for ourselves later. MovieLens is a website devoted to Non-commercial, personalized movie recommendations:

https://movielens.org

As part of a massive open source project in recommendation system development, this website releases large amounts of it’s data to the public to play with.
User-Rating Matrix

<table>
<thead>
<tr>
<th>User</th>
<th>Movie 1</th>
<th>Movie 2</th>
<th>Movie 3</th>
<th>Movie 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

LOTS OF MISSING VALUES!!
What can we do with distance alone?

http://lifeislinear.davidson.edu/movieV1.html