1. On a coordinate plane, draw the vectors $a = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $b = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and then draw $c = a + b$. Make dotted lines which illustrate how the point/vector c can be reached by connecting the vectors a and b “tail-to-head”.

2. Use the following vectors to answer the questions:

 $v = \begin{pmatrix} 6 \\ -1 \end{pmatrix}$ $u = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ $x = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$ $y = \begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix}$ $e = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

 a. Compute the following linear combinations, if possible:

 $2u + 3v =$
 $u + e =$
 $x - 2y + e =$
 $-2u - v + e =$

 b. Compute the following inner products, if possible:

 $u^T v =$
 $x^T u =$
 $v^T x =$
 $x^T x =$
 $x^T e =$
 $e^T v =$
 $e^T y =$
 $y^T e =$

 c. What happens when you multiply a vector by e?

 d. What happens when you take the inner product of a vector with itself (as in $x^T x$)?