Homework Due March 1 - answers

Ch. 6, Problem 1: Find an isomorphism from the group of integers under addition to the group of even integers under addition.

Solution: I will show that the map \(f(x) = 2x \) is an isomorphism. Any even integer is of the form \(2n \) for some integer \(n \), so \(f \) is onto. If \(f(x) = f(y) \), then \(2x = 2y \) so \(x = y \). Therefore \(f \) is one-to-one. Since \(f(x + y) = 2(x + y) = 2x + 2y \) we can now conclude that \(f \) is an isomorphism.

Ch. 6, Problem 4: Show that \(U(8) \) is not isomorphic to \(U(10) \).

Solution: Looking at the multiplication table for \(U(8) \) one sees that \(x^2 = 1 \) for all \(x \in U(8) \). In \(U(10) \) we have \(3 \cdot 3 = 9 \neq 1 \). If \(f : U(8) \to U(10) \) were an isomorphism and \(f(a) = 3 \), we would have \(1 = f(1) = f(a \cdot a) = f(a) \cdot f(a) = 3 \cdot 3 = 9 \), a contradiction.

Ch. 6, Problem 5: Show \(U(8) \) is isomorphic to \(U(12) \).

Solution: The multiplication tables are, respectively:

\[
\begin{array}{ccc|ccc}
U(8) & 1 & 3 & 5 & 7 \\
1 & 1 & 3 & 5 & 7 \\
3 & 3 & 1 & 7 & 5 \\
5 & 5 & 7 & 1 & 3 \\
7 & 7 & 5 & 3 & 1 \\
\end{array}
\quad
\begin{array}{ccc|ccc}
U(12) & 1 & 5 & 7 & 11 \\
1 & 1 & 5 & 7 & 11 \\
5 & 5 & 1 & 11 & 7 \\
7 & 7 & 11 & 1 & 5 \\
11 & 11 & 7 & 5 & 1 \\
\end{array}
\]

The map \(f : U(8) \to U(12) \) defined by \(f(1) = 1, f(3) = 5, f(5) = 7, f(7) = 11 \) is an isomorphism because it is one-to-one, onto and preserves the group laws by inspection.

Ch. 6, Problem 10: Let \(G \) be a group. Prove that the mapping \(\alpha(g) = g^{-1} \) for all \(g \) in \(G \) is an automorphism if and only if \(G \) is Abelian.

Solution: The mapping is always one-to-one because \(g^{-1} = h^{-1} \) implies that \(g = (g^{-1})^{-1} = (h^{-1})^{-1} = h \). The mapping is always onto because for and \(g \in G \), \(\alpha(g^{-1}) = g \).

Assume that \(\alpha \) is an isomorphism. We then have that \((ab)^{-1} = a^{-1}b^{-1} \) for all \(a, b \in G \). Therefore \(b^{-1}a^{-1} = a^{-1}b^{-1} \). Taking inverses of both sides, we have \(ab = ba \) so \(G \) is abelian. Conversely, if \(ab = ba \) for all \(a, b \in G \), then \(b^{-1}a^{-1} = a^{-1}b^{-1} \). This gives the statement that \(\alpha(ab) = \alpha(a)\alpha(b) \).