Chapter 6 Solutions

1. \(u(x,t) = e^{-4t} \sin x - 3e^{-100t} \sin 5x \).

2. \(u(x,t) = (2 \cos 3\pi t + \frac{2}{3} \sin 3\pi t) \sin \pi x + 7 \cos 9\pi t \sin 3\pi x \).

3. \(\lambda = 0 \) is an eigenvalue if and only if \(a_0 + L\alpha a_L + a_L = 0 \) with eigenfunction \(u(x) = a_0 x + 1 \).

4. a) Set \(\lambda = -k^2 \). Then \(k \) satisfies \(\tanh kL = k|a_0 + a_L|/(k^2 + a_0 a_L) := f(k) \). This is maximized at \(k = \sqrt{a_0 a_L} \) with \(f(k^*) \geq 1 \), so it must intersect \(\tanh kL \) at some value \(k > 0 \).
 b) If \(f'(0) < L \) then \(f \) crosses \(\tanh kL \) twice to produce two eigenvalues (which is also sufficient). This is equivalent to \(a_0 + a_L + L\alpha a_L > 0 \).

5. a) Formalize the graphical arguments in the section.
 b) \(\beta_n = \tan^{-1}(f(\beta_n)) + (n - 1)\pi/L \) but \(f(\beta_n) \to 0 \) as \(n \to \infty \) so \(\theta_n := \beta_n - (n - 1)\pi/L \to 0 \).
 c) Note that \(f(Cn + \theta_n) = (a_0 + a_L)/(Cn) + O(1/n^2) \) and \(\tan(1/n) = 1/n + O(1/n^2) \), which gives that \(\theta_n = (a_0 + a_L)/\pi n + O(1/n^2) \).

6. There are two eigenvalues if \(a_0 + a_L + L\alpha a_L > 0 \), one if it equals zero and none otherwise. Neumann boundary conditions correspond to \(a_0 = a_L = 0 \) and Dirichlet to \(a_0 = a_L = \pm \infty \).

7. Set \(\alpha_i = \sqrt{r_i/p_i} \) and \(\lambda = k^2 \). Continuity of \(u \) and \(u' \) at \(x = m \) gives two equations, along with two more for the boundary conditions. With \(S_i = \sin(k_s i m) \) and \(C_i = \cos(k_s i m) \), a non-trivial solution exists when \(\tan(k\alpha_2 L) = (\alpha_2 S_2 + \alpha_1 C_1 C_2)/(-\alpha_2 S_1 C_2 + \alpha_1 C_1 S_2) \).

8. a) Look for values of \(\mu > 0 \) such that \(\cos \mu L = -1/cos \mu L \). Note that \(\cos \mu L \) has zeros at \(\mu L = n\pi + \pi/2 \) and has minima at \(\mu L = \pi + 2n\pi \); solutions exist between minima and adjacent zeros.
 b) Set \(L\mu_n = (n - 1/2)\pi + \theta_j \). Then \(\cos(L\mu_n) \sim -2e^{-\mu_n L} \) implies \(\theta_n \sim 2(-1)^{n+1}e^{\pi/2}e^{-\pi n} \).

9. a) Use (6.5) to obtain \(b_n = 4/\pi n \) for \(n \) odd and zero otherwise.
 b) Evaluating the series at \(x = \pi/4 \) gives \(1 + 1/3 - 1/5 - 1/7 + 1/9 + \cdots = \frac{\pi}{4} \sqrt{2} \).