p. 49: #3cf, 12cd; p.60: #1bd, 4ab.

p.49: #3(c) If x^2 is not divisible by 4, then x is odd.
Pf. Suppose x is even. Then $x = 2k$ for some integer k, so that $x^2 = 4k^2$ is divisible by 4. Thus, if x^2 is not divisible by 4, then x must be odd.\#

(f) If xy is odd, then both x and y are odd.

Pf. Suppose x and y are not both odd. The one or both of them is even. In this case, xy is even. Thus, if xy is odd, then both x and y must be odd.\#

12. (a) C (proof shows that m^2 even implies m is even).
(c) C (proof assumes the conclusion that $x + y$ is even when x and y are even).

p.60: #1(b) **Pf.** Let $m = 1, n = -1$. Then $15m + 12n = 3$. \#

(d) **Pf.** Suppose integers m, n can be found that satisfy $12m + 15n = 1$. Then the left hand side is divisible by 3, whereas the right hand side is not. Since this is a contradiction, there can be no integers satisfying $12m + 15n = 1$. \#

4. (a) $x = 41$ counterexample.

(b) **Pf.** Let $x \in \mathbb{R}$. Then, letting $y = -x$, we have $x + y = 0$. \#