Partial Differential Equations,
An Introduction to Theory and Applications
by
Michael Shearer and Rachel Levy

Corrections to Text

page 27, problem 3: This problem is too hard (but can be done with maple or mathematica). Calculate \(u_2(x) \) only.

page 41: problem 7 should be the initial value problem posed on the plane \((x, y) \in \mathbb{R}^2\).

A better version of the problem is:
7b. Use the method of characteristics to solve the initial value problem for \(u = u(x, y, t) \) on the domain \(-\infty < x, y < \infty\), small \(t > 0 \):

\[
\begin{align*}
 u_t + y u_x + uu_y &= 0, \\
 u(x, y, 0) &= x + y.
\end{align*}
\]

Show that the solution has a singularity as \(t \to t^* \) for some \(t^* > 0 \), and find the value of \(t^* \).

Problem 10 should refer to a different example - example 5, chapter 2.

page 55, near top: \((x-t)\) should read \(x-ct\). In the formula for \(u(x,t) \), the lower limit of the integral should read \(ct-x\).

page 62, problem 7: the formula for \(u \) should have an additional term:

\[
\begin{align*}
 u(x, t) &= -\int_{0}^{t-x} h(y) \, dy + \frac{1}{2} \left(\phi(x + t) + \phi(t - x) \right) + \frac{1}{2} \int_{t-x}^{x+t} \psi(s) \, ds + \int_{0}^{t-x} \psi(s) \, ds.
\end{align*}
\]

page 79, problem 2: Include “in \(\mathbb{R}^n \)”

page 117, problem 7.5: a ‘+’ should be ‘=’. Prove

\[
(f * g)' = f' * g = f * g'.
\]

page 118, problem 6(b): There should be a \(\pi \) in the argument of \(\sin \): \(\sin \pi(x-n) \).

page 137, Example 1. Integral of \(\eta(x) \) should be over \(x \in \mathbb{R}^n \).

page 138: Delete sentence after Lemma 9.1.

page 147: Third line of text should read: “We now investigate the contributions from \(\partial B(x, \epsilon) \) as \(\epsilon \to 0 \).”

page 150, problem 1(c) should read: “Write the solution \(u(x) \) satisfying \(u(0) = 0 \) in the form”

page 150, problem 9: Hint should be \(u = v/r \).

page 173, problem 3: Missing minus sign on \(u'' \). \(Lu(x) = -u'' + c(x)u \)

page 219: line 5 from bottom: \(w \) should be \(\psi \).

page 243: problem 5: Define \(g(r) = rf(r) \). Then properties in parts (a), (b) can be stated cleanly in terms of derivatives of \(g \). In particular, genuine nonlinearity depends on \(g''(r) \neq 0 \) rather than the condition \(f''(r) > 0 \) stated in the text.