Who is Strategic?*

Daniel E. Fragiadakis
Texas A&M University

Daniel T. Knoepfle
Uber

Muriel Niederle
Stanford University and NBER

April 9, 2016

Abstract

Behavioral game theory models are important in organizing experimental data of strategic decision making. However, are subjects classified as behavioral types more predictable than unclassified subjects? Alternatively, how many predictable subjects await new behavioral models to describe them? In our experiments, subjects play simple guessing games against random opponents and are subsequently asked to replicate or best-respond to their past choices. We find that existing behavioral game theory types capture 2/3 of strategic subjects, i.e., individuals who can best respond. However, there is additional room for non-strategic rule-of-thumb models to describe subjects who can merely replicate their actions.

1 Introduction

A robust finding of strategic choice experiments is that deviations from Nash equilibrium are common. This has lead to alternative behavioral models with varying specifications of beliefs and derived choices; of these, hierarchy models, particularly the level-k model, seem to be the most prominent.\(^1\) In a typical empirical paper, laboratory participants play a set of games

\(^1\)A level-k player best-responds to beliefs that opponents are level-$(k - 1)$, with a level-0 player assumed to randomly choose any action or to choose a fixed action considered to be focal. The model originated in empirical papers that found it rationalized large fractions of behavior in beauty contest games (Nagel, 1995) and small normal-form games (Stahl and Wilson, 1994, 1995). The level-k model has since been used to model strategic behavior in a multitude of experiments, and has spawned a literature on extensions and theoretical underpinnings. A notable variant is the cognitive hierarchy model (Camerer, Ho, and Chong, 2004), in which frequencies of types k in the population are assumed to be distributed according to some distribution, and a player of type k has beliefs about opponent types corresponding to this distribution truncated at $k - 1$.

*We are especially grateful to Asen Ivanov for his impact on the design of the experiment. We thank Vince Crawford, Guillaume Fréchette and Matt Jackson for helpful comments and the NSF for generous support.
and are then classified into a set of pre-specified behavioral types; see Crawford, Costa-Gomes, and Iriberri (2013) for an overview.

Such a procedure, however, does not directly test whether the set of existing behavioral game theory types coincides with the set of participants who play according to a specific rule. For instance, a participant may follow a behavioral model that is yet to be discovered. In this paper, we develop a method to identify any participant who uses a specific rule, even if we do not know what that rule is. This allows us to determine how much room (if any) there is for new behavioral game theory models. Put differently, our test provides the fraction of subjects that additional models could conceivably capture.

The set of participants classified as behavioral game theory types may differ from the set of participants who deliberately follow deterministic rules. First, due to the necessity of allowing for error when classifying subjects, a type I error can occur. That is, a participant can be misclassified as some behavioral game theory type when her underlying behavior follows a different rule or no rule at all. Second, a type II error can occur if a participant does not follow a pre-existing model but nonetheless deliberately applies a deterministic rule that we do not (yet) understand. In this paper we address both type I and type II errors. Specifically, we determine whether a subject belongs one of the following sets (or neither or both): participants who follow existing game theory models and those who deliberately apply a deterministic rule. Using conventional methods, we can easily identify the first set. Determining who belongs to the second set is more challenging.

For example, if existing models fail to describe a participant’s observed choices, we need to determine whether her decisions are reached via an unknown but otherwise deliberate process versus are chosen arbitrarily. To achieve this, we design a test to assess whether a participant deliberately uses a deterministic rule, be it a known rule from existing behavioral game theory models, or a rule for which no model yet exists. Furthermore, we test whether deterministic players are strategic. On the one hand, they may implement non-strategic “rules of thumb” that involve making actions in the absence of forming beliefs over opponent play. On the other, a deterministic player may follow a belief-based rule and be able to adapt her behavior to information about her opponent. Our approach provides insight into how much room there is for new behavioral game theory models and, in particular, the relative room for strategic belief-based models versus non-strategic rules of thumb.

In our experiment, subjects first play twenty two-player guessing games with anonymous partners and without feedback (Phase I). The games are similar to those from Costa-Gomes and Crawford, 2006, henceforth CGC. Applying a conventional approach, we classify a participant

2 In addition to the works mentioned above, some leading examples of papers that seek to classify participants are Costa-Gomes, Crawford, and Broseta (2001) for normal form games, and Crawford, Gneezy, and Rottenstreich (2008) for coordination games.
as a behavioral type (from a set of models that includes equilibrium, level-\textit{k}, and others) if it sufficiently explains a subject’s gameplay. Under this approach, we classify 30% of subjects and leave the remainder unclassified. While this seems like a failure of our approach and/or existing models, it is unclear how many of the unclassified subjects we should expect to describe with yet to be developed models. In other words, if the unclassified subjects exhibit sufficient arbitrariness in their Phase I behavior, it would not only be extremely difficult to explain them with deterministic rules, doing so would simply be misguided.

After completing Phase I, we present each participant with an unanticipated Phase II to test whether she deliberately applied a deterministic rule in Phase I. In Phase II of the \textit{Replicate} treatment, a subject is tasked with replicating her Phase I behavior. Specifically, a participant is re-shown the Phase I games (with the order preserved) and is paid more as her Phase II guesses near her corresponding Phase I guesses. Under reasonable assumptions of self-awareness and cognitive ability, any subject who deliberately uses a well-defined deterministic rule in Phase I should be able to replicate it in Phase II, even if it is a rule of thumb. Conversely, arbitrary Phase I behavior should be non-replicable; indeed, results from a separate control treatment show that purely numeric memory of Phase I choices is very limited.

In Phase II of the \textit{BestRespond} treatment, a subject is tasked with best-responding to her Phase I behavior. A participant replays the Phase I games (with the order preserved) but now takes the role that was previously occupied by her Phase I opponents. Furthermore, we inform a participant that her Phase II opponent is her computer that is programmed to make the Phase I guesses that she herself previously made; we do not inform the participant of her explicit Phase I choices. In effect, subjects in the \textit{BestRespond} treatment play against their past selves3. Unlike the \textit{Replicate} treatment, a participant’s payoff-maximizing choice in a game in Phase II of the \textit{BestRespond} treatment is the best-response in that game to the subject’s original Phase I action. We reason that any subject who deliberately uses a belief-based rule in Phase I, and is aware of doing so, should be able to first replicate her former guess and then best-respond to it.

When considering the 70% of subjects that are unclassified from the \textit{Replicate} and \textit{BestRespond} treatments, we find that most of them fail to meet a permissive threshold of making at least 8 optimal Phase II choices out of 20. The 30% of subjects that are classified, however, are far more likely to meet this threshold. This unequivocally confirms the success of existing behavioral models (such as level-\textit{k}) in identifying the types of subjects that they intend to describe: participants that deliberately apply deterministic rules. Put another way, our test’s results show that the classified subjects, as a group, are different from the unclassified

3This treatment is inspired by the design in Ivanov, Levin, and Niederle (2010) but has important differences we discuss below. A design in which subjects play against themselves is also a central component of Blume and Gneezy (2010).
subjects; these groups cannot be described as having participants with equally well-defined
decision rules. Furthermore, we find that classified subjects can best-respond to their former
guesses just as well as they can replicate them while unclassified subjects find best-responding
much harder than replicating. This result, coupled with the assumption that rule of thumb
subjects should be able to replicate but necessarily best respond to their behavior, suggests
that non-strategic models would better than belief-based rules in explaining the unclassified
participants.

To further investigate this, we can consider subjects with high rates of replicating and best
responding and ask how many are classified as behavioral types. In the Replicate treatment,
our existing models account for only 40% of subjects score well in Phase II. In contrast, our
existing models explain over two thirds of subjects who score well in Phase II of the BestRespond
treatment. This difference provides further support to the hypothesis that there is more room
for the development of new rules of thumb as oppose to novel belief-based models. In particular,
32% of subjects with high rates of best responding are unexplainable with our set of existing
models while 35% are explained with level-k. Thus, a new class of strategic decision rules
would at best describe a smaller proportion of subjects than level-k explains. Though we shed
some light on the nature of new decision rules, our experiment was designed mainly to show
their existence.

In summary, this paper provides a new methodology that can assess whether the behavior of
an agent follows a deterministic rule versus exhibits idiosyncratic randomness in her decision-
making. Importantly, the tests that we construct can identify deliberate subjects without
having to understand the rules governing their choices. The value in capturing deliberate
subjects before understanding their behavior is that it allows us to know how many (and which)
subjects we should even attempt to describe with future models. The specific environment we
consider in this paper involves pure strategies in two-player guessing games. In the concluding
remarks, we discuss how our tests of deliberation might be expanded to mixed strategies as
well as how they could be applied to not only games, but to non-strategic decision situations
as well.

The paper proceeds as follows: Section 2 describes the experiment and Section 3 the
classification of subjects. In Section 4 we present results pertaining to whether classified and
non-classified subjects are able to replicate their previous actions and best respond to them. We
provide control treatments that show that the ability to replicate actions is due to recomputing
a rule and not due to memorizing actual guesses. We also show that participants are able to
compute the best response, hence failing to do so is not driven by a lack of understanding or
computational ability. Section 5 discusses the literature and we conclude in Section 6.
2 The Experiment

2.1 Two-Person Guessing Games

Participants interact in simple complete information “two-person guessing games”\(^4\). In a two-person guessing game, player \(i\) facing opponent \(j\) wishes to guess as close as possible to her goal, which equals her target multiple \(t_i\) times her opponent’s guess \(x_j\). Likewise, player \(j\)’s goal equals his target multiple \(t_j\) times \(x_i\). Each player has a range of allowable guesses \([l_i, u_i]\), and the two players simultaneously submit guesses \(x_i\) and \(x_j\). The payoff of \(i\) is a strictly decreasing function \(e_i = |x_i - t_i x_j|\), the realized distance from the player’s guess \(x_i\) to her goal \(t_i x_j\). We present the 20 games used in the experiment, as well as the predictions of various behavioral game theory models in Table 1. Further details are given later in this section.

2.2 Experimental Treatments

All treatments but one share a common two-phase structure. In Phase I, subjects play a series of 20 two-person guessing games against anonymous opponents without feedback. Game parameters are public information in all games and are presented as in Figure 1. In Phase II, subjects were tasked with either replicating or best-responding to their own first-phase choices in the same series of games.

<table>
<thead>
<tr>
<th>DM1 (YOU)</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM2 (OTHER PARTICIPANT)</td>
<td>(l_1)</td>
<td>(u_1)</td>
<td>(t_1)</td>
</tr>
<tr>
<td></td>
<td>(l_2)</td>
<td>(u_2)</td>
<td>(t_2)</td>
</tr>
</tbody>
</table>

Figure 1.—Presentation of game parameters in Phase I

The experiment consisted of the Replicate, BestRespond, ShowGuesses, and Memory treatments. The Phase I tasks of the Replicate, BestRespond, and ShowGuesses treatments were the same and are described in a single subsection below. We then explain Phase II of each of these treatments separately. Finally, we discuss the Memory treatment.

2.2.1 Phase I of the Replicate, BestRespond, and ShowGuesses Treatments

Subjects play all 20 games in individually-specific random orders without feedback on realized payoffs or opponents’ guesses. Subjects are randomly and anonymously rematched with

\(^4\)Another “two-person guessing game” is that of Grosskopf and Nagel (2008). They consider the familiar “p-beauty contest” guessing game where \(n\) players guess a number between 0 and 100, and the winner is the player closest to \(p\) times the mean of all submitted guesses, with \(p < 1\). When \(n = 2\), as in their experiments, guessing 0 becomes a dominant strategy. We opt for CGC games as they allow us to have subjects play many different games in which different models that have agents best-respond to beliefs result in different actions.
opponents before each game. Subjects always see themselves in the role of player 1 (called “Decision Maker 1” or “DM1”) in instructions and the experimental task, as shown in Figure 1. If i is matched to opponent j in a given trial, she wishes to make a guess x_i as close as possible to her goal t_ix_j and earns a payoff decreasing in $e_i = |x_i - t_ix_j|$.

2.2.2 Phase II of the Replicate Treatment

In Phase II of the Replicate treatment, a subject faces the same sequence of 20 games from Phase I in the same order. Participants are told their goal in a Phase II game is to guess as close as possible to their previously made guess in that game in Phase I. In other words, for a given game, let x^I_i be the guess subject i makes in Phase I and x^{II}_i be her guess in Phase II. Then subject i’s payoff from Phase II is strictly decreasing $e_i = |x^{II}_i - x^I_i|$ (according to the same function that translates her Phase I distance to her Phase I monetary payoff).

2.2.3 Phase II of the BestRespond Treatment

In Phase II of the BestRespond treatment, a subject faces the same sequence of 20 games from Phase I in exactly the same order. Now, however, subjects are informed they will play in the role of player 2, while the role of player 1 (that they had occupied in Phase I) would be taken by the computer. A subject is told that her computer will make the exact same guess that the subject previously made when playing the game in Phase I. Effectively, a participant plays against her former self. Mathematically, if subject i makes a guess of x^I_i in Phase I in game $\{[l_1, u_1], t_1; [l_2, u_2], t_2\}$, then her Phase II goal is to make a guess x^{II}_i that is as close as possible to $t_2x^I_i$ (since t_2 is her target multiplier in Phase II). Subject i’s payoff from Phase II is strictly decreasing $e_i = |x^{II}_i - t_2x^I_i|$ (according to the same function that translates her Phase I distance to her Phase I monetary payoff). Subjects are not shown their previous Phase I guesses when making their Phase II guess. The games are presented to subjects as in Figure 2.

To score well in Phase II of the BestRespond treatment, a subject has to understand that the information that her opponent is replaced by her computer that uses her Phase I choices is valuable. Using this insight, they need to first replicate their own former guess, and then compute the best-response.

5Unknown to subjects, in each session we split them into two equal-sized groups, G1 and G2. The group specifies the game role in each of the 20 games; that is, the matching is such that each pair of opposing players consists of one member of G1 and one member of G2.

6The motivation behind the preservation of order across phases is twofold. First, subjects may switch rules during Phase I and only remember the number of games played before the switch; they may not remember the specific games for which they use each of their rules. Second, for every game in Phase I, the subject makes the same number of guesses, 19, before seeing that same game again in Phase II. On average, for both this treatment as well as the BestRespond treatment, 45 minutes pass between playing a given game in Phase I and playing that same game in Phase II.
Table 1.—The 20 two-person guessing games and behavioral game theory type guesses

<table>
<thead>
<tr>
<th>ts</th>
<th>player</th>
<th>l</th>
<th>u</th>
<th>t</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>EQ</th>
<th>D1</th>
<th>D2</th>
<th>Game</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1</td>
<td>100</td>
<td>900</td>
<td>0.5</td>
<td>150</td>
<td>250</td>
<td>112.5</td>
<td>100</td>
<td>162.5</td>
<td>131.25</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>100</td>
<td>500</td>
<td>1.5</td>
<td>500</td>
<td>225</td>
<td>375</td>
<td>150</td>
<td>262.5</td>
<td>262.5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>300</td>
<td>900</td>
<td>0.7</td>
<td>350</td>
<td>546</td>
<td>318.5</td>
<td>300</td>
<td>451.5</td>
<td>423.15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>100</td>
<td>900</td>
<td>1.3</td>
<td>780</td>
<td>455</td>
<td>709.8</td>
<td>390</td>
<td>604.5</td>
<td>604.5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>G1, G2</td>
<td>100</td>
<td>500</td>
<td>0.7</td>
<td>210</td>
<td>315</td>
<td>220.5</td>
<td>350</td>
<td>227.5</td>
<td>227.5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>G1, G2</td>
<td>300</td>
<td>500</td>
<td>1.5</td>
<td>450</td>
<td>315</td>
<td>472.5</td>
<td>500</td>
<td>337.5</td>
<td>341.25</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>300</td>
<td>900</td>
<td>1.3</td>
<td>780</td>
<td>900</td>
<td>900</td>
<td>838.5</td>
<td>900</td>
<td>900</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>300</td>
<td>900</td>
<td>1.3</td>
<td>780</td>
<td>900</td>
<td>900</td>
<td>838.5</td>
<td>900</td>
<td>900</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>300</td>
<td>500</td>
<td>1.5</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>100</td>
<td>900</td>
<td>0.5</td>
<td>150</td>
<td>175</td>
<td>100</td>
<td>150</td>
<td>100</td>
<td>150</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>100</td>
<td>900</td>
<td>0.5</td>
<td>200</td>
<td>175</td>
<td>150</td>
<td>200</td>
<td>150</td>
<td>150</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>300</td>
<td>500</td>
<td>0.7</td>
<td>350</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>12</td>
</tr>
</tbody>
</table>

The game parameters \(\{l_1, u_1; l_2, u_2, t_2\} \) and model predictions for all 20 games are reported above. The player, G1 or G2, specifies the role taken by the group’s players in that game in Phase I. For each game we also give the source of the game (from CGC or generated by us) and the quality of type separation (ts), strong or weak, where strong type separation requires that \(L_1, L_2, L_3, L_4, \) and \(EQ \) are separated by at least 10 units. Each subject played each game once, where games 3, 4, 5, 6, 15, 16, 17 and 18 are played from both sides.
The need for the *BestRespond* treatment arises from the fact that subjects who succeed in replicating their Phase I guesses do not necessarily have choices in Phase I that are strategic, i.e. belief-based. For example, it has been argued that the level-*k* model may merely coincide with non-strategic rules of thumb, especially for low level-*k* types like *L* (see e.g. Coricelli and Nagel, 2009 and Crawford, Costa-Gomes, and Iriberri, 2013). A subject *i* who uses a rule of thumb may not recognize the value of the information that the action of the opponent in Phase II is *i*’s Phase I action. We therefore expect a subject whose behavior derives from a non-strategic rule of thumb to be able to replicate her past behavior, but not necessarily best-respond to it.\(^7\)

2.2.4 Control: Phase II of the *ShowGuesses* Treatment

Failure to best-respond in Phase II of the *BestRespond* treatment could also simply derive from difficulty in understanding or willingness in executing the computations necessary to determine the best response to a guess. The *ShowGuesses* treatment provides a control for this hypothesis. The *ShowGuesses* treatment is identical to the *BestRespond* treatment with one exception: when prompted for her guess in Phase II, a subject in the *ShowGuesses* treatment is shown her Phase I guess. Being able to best-respond to a shown guess seems like a minimal requirement for subjects who deliberately make strategic choices, that is, subjects who form potentially non-equilibrium beliefs about the behavior of their opponents and best-respond to these beliefs.

2.2.5 Control: *Memory* Treatment

We presume that a subject who successfully replicates or best-responds to her past guesses in our main treatments does so by reimplementing the deliberate process of choice that produced these guesses in Phase I. There is, however, the possibility that some subjects simply have good memories; they may remember the numeric values of a large fraction of their guesses, even if those guesses were not deliberate or systematic. In the *Memory* treatment, we provide a

\[^7\]Cooper and Kagel (2005) provide compelling evidence that subjects often fail to play strategically because they fail to think about the behavior of their opponent. However, it could be that some subjects whose initial behavior was produced by a rule of thumb were able to best-respond to that behavior, as success in Phase II of the *BestRespond* treatment requires only a minimal form of strategic thinking.
benchmark for how readily subjects can remember 20 guesses that do not follow any consistent system.

In Phase I of the Memory treatment, a participant plays 20 games against a computer that makes a uniform random guess in each. A subject is shown the computer’s guess before having to submit her own. Phase I was otherwise the same as in the other treatments. Phase II of the Memory treatment is identical to Phase II of the Replicate treatment; subjects are tasked with replicating their Phase I guesses but are not presented with the values of their Phase I guesses when prompted for their Phase II guesses. The number of remembered guesses in Phase II provides a benchmark for numeric memory.

2.3 Experimental Procedures

Our study took place at Stanford University. Sessions consisted of either six, eight, or ten participants, all Stanford undergraduates. A session lasted about two hours, and subjects earned an average of $55.17 including a $5.00 show-up fee.

While subjects are initially informed of the two-phase structure, they receive no details about Phase II until after Phase I is completed. After hearing instructions for Phase I, subjects complete an understandings test on paper followed by a second computer-based understandings test. Participants are given simple pocket calculators for use during the experiment.

For the first several decisions in each phase, subjects are not permitted to submit their guesses until after a certain time elapses; these restrictions are imposed in hopes that subjects will take the time to make thoughtful decisions. After Phase II, subjects complete a short questionnaire and learn their monetary earnings from the experiment.

For each guess in a game, a subject can earn anywhere from 0 to 300 points. The point payoff function used is identical to that of CGC; it is a piecewise-linear decreasing function. Let \(e_i = |x_i - y_i| \) denote the distance between participant \(i \)'s guess \(x_i \) and her goal \(y_i \) in a

*Phase I of the Memory treatment serves as an additional control, like Phase II of the ShowGuesses treatment, for determining whether participants are able and willing to calculate the best response to a known guess.

*In Phase I, subjects have to wait 2 minutes for the first three games and one minute for the next two before submitting a guess. In Phase II we employ similar timing restrictions: subjects must wait one minute in each of the first five trials. For practical reasons (the experiment could not proceed to Phase II until all participants had completed Phase I), we also place soft limits on the maximum amount of time subjects can take to reach their decisions. In Phase I, this limit is five minutes for each of the first three trials, three minutes for each of the next two, and two minutes for each thereafter. In Phase II, subjects have up to three minutes for each of the first five trials and two minutes for each of the remaining fifteen. When the experimenter’s screen shows a subject taking more than the maximum time, the experimenter makes a verbal announcement reminding subjects to try to stay within the time limits. Otherwise, subjects can proceed at their own pace.
The points participant i earns from that trial are $s(e_i)$, where

$$ s(e_i) = \begin{cases}
300 - \frac{11}{10}e_i & \text{if } e_i \leq 200 \\
100 - \frac{1}{10}e_i & \text{if } 200 \leq e_i \leq 1000 \\
0 & \text{if } e_i \geq 1000
\end{cases} $$

In hopes of mitigating concerns about unobserved varying risk preferences, the point payoffs in each trial are converted to realized monetary earnings using separate and independent binary lotteries run at the end of the experiment (Roth and Malouf, 1979). If a subject earns s points in a trial, the corresponding lottery pays $2 with probability $s/300$ and 0 with probability $1 - s/300$.

2.4 Predicted Behavior in Two-Person Guessing Games

To describe the equilibrium and behavioral game theory model predictions, we introduce the function $R(l, u, x) \equiv \min\{\max\{l, x\}, u\}$ (read, “restrict x to $[l, u]$”). That is, $R(l, u, x)$ is equal to l when $x < l$, u when $x > u$, and x otherwise. We select game parameters such that equilibrium play has a unique prediction.

Observation 1. (CGC) Let $\{[l_i, u_i], t_i; [l_j, u_j], t_j\}$ be a two-player guessing game. When $t_it_j \neq 1$ and payoffs are strictly positive, the game has a unique equilibrium (x_i, x_j) in pure strategies:

- If $t_it_j < 1$, $x_i = R(l_i, u_i, t_il_j)$ and $x_j = R(l_j, u_j, t_jl_i)$.
- If $t_it_j > 1$, $x_i = R(l_i, u_i, t_iu_j)$ and $x_j = R(l_j, u_j, t_ju_i)$.

Since we consider behavior in complete information games and focus on deterministic rules, the leading behavioral game theory models to describe subjects, next to equilibrium, are level-k and dominance-k. We adopt the common definition that a level 0 ($L0$) player i picks x_i randomly and uniformly from her action set. A player of level $k+1$ believes the opponent uses the level-k rule and best-responds to this belief.

10In Phase I of the BestRespond, Replicate, and ShowGuesses treatments, $y_i = t_ix_j$, where x_j is the guess of the opponent and t_i is player i’s target. For Phase I of the Memory treatment, x_j is the computer-generated guess shown to the subject while she chooses her own guess x_i. Suppose x'_i is i’s guess from a given game in Phase I. In Phase II of the Replicate and Memory treatments, $y_i = x'_i$. In Phase II of the BestRespond and ShowGuesses treatment, $y_i = t''Ix'_i$, where $t''i$ is i’s target in Phase II of that game. Note that y_i may fall outside of the guessing range $[l_i, u_i]$.

11In Phase I of the Memory treatment and Phase II of the ShowGuesses treatment, the winning lottery amount was $1 instead of $2, since these tasks were quite simple.
Here, an L^1 player who best-responds to a hypothesized opponent who uniform-randomly chooses over her allowed guesses plays the same as if she believes her opponent will play the midpoint of her guessing range with certainty (see CGC); given strictly positive payoffs, the unique best-response is $R(l_i, u_i, t_i(l_j + u_j)/2)$. This pins down the behavior of higher levels in the level-k hierarchy: A level-$k + 1$ player chooses the best-response to the level-k guess of her opponent.

We also consider the dominance-k model examined by CGC, where a D^k player performs k rounds of iterative deletion of dominated strategies and best responds the belief that her opponent plays uniformly at random among her remaining actions. In Table 2 we summarize the predicted guesses of the behavioral types we focus on in this paper. The table simplifies notation by shortening $R(l_i, u_i, x)$ to $R_i(x)$. The numeric values for the guesses of behavioral game theory types of the 20 games are given in Table 1.

Table 2.—Formulas for Behavioral Game Theory Types’ Guesses

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Formula for Player i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>$R_i(t_i[l_j + u_j]/2)$</td>
</tr>
<tr>
<td>Level 2</td>
<td>$R_i(t_iR_j(t_j[l_i + u_i]/2))$</td>
</tr>
<tr>
<td>Level 3</td>
<td>$R_i(t_iR_j(t_jR_i(t_i[l_j + u_j]/2)))$</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>$R_i(t_i[l_j])$ if $t_i t_j < 1$ and $R_i(t_i u_j)$ if $t_i t_j > 1$</td>
</tr>
<tr>
<td>Dominance 1</td>
<td>$R_i(t_i[R_j(t_j[l_i]) + R_j(t_j u_i)])/2$</td>
</tr>
<tr>
<td>Dominance 2</td>
<td>$R_i(t_i[\max{R_j(t_j[l_i]), R_j(t_jR_i(t_i[l_j]))}] + \min{R_j(t_j u_i), R_j(t_jR_i(t_i u_j))}])/2$</td>
</tr>
</tbody>
</table>

2.5 Game Design

Each participant plays a common set of twenty games, each with a unique Nash equilibrium. The games are chosen to identify various behavioral types. For each game, guessing range endpoints l and u are multiples of 50 between 0 and 1000, inclusive. Targets t are positive multiples of 0.1 in $(0, 1) \cup (1, 2)$.

We use all eight games from CGC, one of which one is a symmetric game. While CGC had subjects play all eight games from both sides, we did this for only two of the CGC games (see the 3-4 game pair and the 5-6 game pair in Table 1). In addition, we use two games (19 and 20) where each has a dominant strategy for one player. For the remaining eight games, we wanted each game to provide type separation between the most common behavioral types, namely L^1, L^2, L^3, L^4, and EQ, to clearly identify a subject’s. Otherwise, we had no specific hypotheses about what games would be more or less conducive to behavior that concords with a given model. To ensure against inadvertently choosing parameters that favor certain behavior, we generate the remaining eight games randomly, subject to the above restrictions.
on the parameters and the requirement that there is a distance of at least 30 units between the L_1, L_2, L_3, L_4, and EQ predictions. These 8 games are games 11-18 in Table 1. As a result, in 14 games (8 randomly-generated and 6 from CGC) we have reasonable type separation between L_1, L_2, L_3, L_4, and EQ, with the distance between those types’ predicted guesses never less than 10.5 units.12 Such type separation facilitates classifying a subject as a given type on the basis of observed choices.

3 Behavioral Types in Two-Person Guessing Games

Before we analyze the behavior of all 150 participants in the BestRespond, Replicate and ShowGuesses treatments, we provide evidence that our participants understand the games and seem sufficiently motivated by the incentives in the experiment.

We have 20 participants in the Memory treatment who, in Phase I, are tasked with responding to the displayed guesses of the computer, and 10 participants in the ShowGuesses treatment who, in Phase II, are tasked with responding to their Phase I guesses while they are shown to them. Of those 600 guesses, all but 5 are within 0.5 units of the best response. This demonstrates that our participants understand the games and are willing and able to calculate the best responses to given guesses.13 Being able to best-respond to a shown guess seems like a minimal requirement for subjects who are supposed to form beliefs about the opponent and best-respond to them, which corresponds to the literal interpretation of the behavioral types we consider.

We also examine whether subjects make dominated guesses, which cannot be rationalized as best-responses to beliefs.14 If subjects chose actions uniformly at random in all Phase I decisions, they are expected to make 7.40 dominated guesses on average. In fact, the average number of dominated guesses is 2.35 (s.d. 2.68).15 About one-third of the 150 subjects (44) have no dominated guesses, and about two-thirds (97) have two dominated guesses or fewer. Only 17 subjects have 6 or more dominated guesses, and 9 of whom have 8 or more.

12While 70\% of games in our experiment have type separation between L_1, L_2, L_3, L_4, and EQ, in CGC this is the case for 50\% of the 16 games. Partly as a result, we have fewer classified subjects than CGC. For details on the comparison between our results and those of CGC, see the online appendix.

13Furthermore, these results are obtained under experimental incentives half those used in the main treatments: in these trials, the lottery payoff is only one dollar instead of two.

14In a guessing game $\{[l_1, u_1], t_1; [l_2, u_2], t_2\}$ a guess x_i of player i is dominated if $x_i < \min\{u_i, t_i l_j\}$ or $x_i > \max\{l_i, t_i u_j\}$. Players are able to make dominated guesses in 13 and 17 of the 20 games, for G1 and G2 subjects respectively.

15Subjects do not appear to “learn” substantially over the course of the games by this measure: the number of dominated guesses in the first 10 games is 1.13 (s.d. 1.42) compared to 1.22 (s.d. 1.56) in the last 10 games, a small and statistically not significant difference ($p > 0.3$). We can analyze “learning” this way because every subject sees the 20 games in a subject-specific random order.
3.1 Behavioral Types Identified in Phase I

We use a simple and straightforward method – very much in line with CGC – to identify participants who can be described by \(L_1\), \(L_2\), \(L_3\), \(EQ\), \(D_1\), or \(D_2\) on the basis of their Phase I play. We classify a participant \(i\) as having apparent type \(m\) when at least 8 of their 20 guesses (40%) are within 0.5 units of \(m_i\), the action \(i\) would take under rule \(m\). A 0.5 unit window ensures that a behavioral type guess \(m_i\) that is rounded to the closest integer is still counted as being a guess of behavioral type \(m\). While it is possible that a subject is classified as more than one type, this does not happen in our data.

With these parameters, we classify 30% of participants; the results are shown in Table 3. A large fraction of classified subjects are \(EQ\) (10%) and \(L_1\) (9.3%) types, with \(L_2\) (6.7%) making up much of the remainder. Not a single subject is identified as \(D_2\), but some match \(L_3\) (2) and \(D_1\) (4). We find no \(L_4\) subjects. Starting from Nash equilibrium only, adding a small set of behavioral types increases the set of classified subjects by 200 percent. Compared to CGC, we have relatively more equilibrium types and somewhat fewer \(L_1\) and \(L_2\) types; for a more detailed comparison see the online Appendix.\(^{16}\)

<table>
<thead>
<tr>
<th>Organization of Subjects</th>
<th>(L_1)</th>
<th>(L_2)</th>
<th>(L_3)</th>
<th>(EQ)</th>
<th>(D_1)</th>
<th>(D_2)</th>
<th>Unclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects</td>
<td>14</td>
<td>10</td>
<td>2</td>
<td>15</td>
<td>4</td>
<td>0</td>
<td>105</td>
</tr>
<tr>
<td>Percentage of Classified</td>
<td>31.1%</td>
<td>22.2%</td>
<td>4.4%</td>
<td>33.3%</td>
<td>8.8%</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

Subjects (150) are pooled from the \textit{Replicate}, \textit{ShowGuesses} and \textit{BestRespond} treatments

Because we allow only for small mistakes when matching subjects against the model predictions, it is quite unlikely that a subject having eight guesses or more coinciding with a given model has this happen out of chance. There is, however, one strategy (outside our pre-specified models) that may make a subject spuriously appear as a Nash equilibrium type. Specifically, for G1 and G2 subjects, 15 and 10 out of 20 equilibrium guesses are on the guessing range boundary, respectively. For the other behavioral types, at most 5 of the 20 predicted guesses are on the boundary. Hence, a player who always plays one of the boundaries might wrongly be classified as matching the equilibrium type. In our sample we may there are two subjects for which this may be a concern.\(^{17}\)

\(^{16}\)In CGC, of all classified participants, 46.4% are \(L_1\), 27.8% are \(L_2\), 4.7% \(L_3\) and 20.9% are \(EQ\). They have no \(D_1\) or \(D_2\) types when using their “apparent from guesses” method.

\(^{17}\)Of the 15 subjects identified as equilibrium types, two have all their equilibrium guesses on the boundary, and furthermore, have 15 and 20 of their guesses on the boundary, respectively. The subject with 15 boundary guesses is from the \textit{BestRespond} treatment and the subject with 20 boundary guesses is from the \textit{Replicate} treatment. The other 13 equilibrium-type subjects have at most 10 guesses on the boundary and never more
The relative distribution of behavioral types among classified subjects is quite stable, even when using classification thresholds other than 40%. Specifically, for each subject and each behavioral type, we count the number of games where that subject’s decision matches the behavioral type’s prediction. We then identify the (perhaps non-unique) behavioral type with the largest count and call this the subject’s modal type.\footnote{Since the modal type is in general not unique, we count a subject that has \(n \) behavioral types \(\{m_1, ..., m_n\} \) for her modal type as \(1/n \) of an \(m_1 \) player, for \(m_i \in \{L1, L2, L3, EQ, D1, D2\} \) for \(1 \leq i \leq n \).} For any \(q \in \{1, ..., 20\} \) and any behavioral type, we can compute the number of subjects whose modal type corresponds to the given model and who match that type in \(q \) or more games. For detailed results see the online Appendix.

While many subjects have fewer than 8 modal-type guesses, the non-modal-type guesses generally do not correspond to any of our other behavioral models. That is, subjects rarely “switch” from one behavioral type to another. Only 9\% of subjects have more than 3 guesses matching behavioral types that are not their modal type.\footnote{Subjects with 10–12 modal-type guesses seem to have the most behavioral type guesses that differ from their modal behavioral type. However, such subjects would be classified as their modal type given the apparent type method anyway, as the threshold for classification is to have at least 8 guesses of the same type. Only 20\% (21/105) of subjects with fewer than 8 modal types have a total number of 8 or more behavioral type guesses. The Figure in the online Appendix shows, for each number of modal type guesses \(n \) and each subject with \(n \) modal type guesses, the number of behavioral type guesses of the subject.}

4 Who uses a Deterministic Rule and Who is Strategic?

Behavioral game theory allows us to describe players using simple and portable models such as level-\(k \) and dominance-\(k \). While the equilibrium type alone allows us to classify 10\% of subjects, adding the level-\(k \) and dominance-\(k \) behavioral models brings this to 30\%. This leaves almost 70\% of subjects not classified as behavioral game theory types. A traditional next step would be to relax classification criteria by allowing participants to implement their strategy with error. Such an exercise, in general, restricts attention to a given set of behavioral game theory types.\footnote{There are, of course, exceptions, e.g. CGC.} The goal of the present paper is to assess how many of the 70\% unclassified subjects use deterministic rules that differ from those described by existing behavioral game theory models.

We therefore propose a test of whether or not a subject deliberately plays according to a deterministic rule. In short, the test checks whether subjects are predictable, that is, if they behave in Phase II as expected given their Phase I choices. If a subject who is classified as a behavioral type is indeed applying that type’s rule deliberately, we would expect the participant
to score highly on our test. This expectation is driven by the fact that, to have been classified in the first place, a participant must have implemented her behavioral type with essentially no error in at least 40% of the games. We therefore expect a classified subject to make Phase II guesses that conform to the predictions generated from her Phase I guesses (and the particular treatment she is in). If the 70% of subjects not classified as behavioral types are to a large extent not using deliberate deterministic rules, we would expect them, as a group, to not score highly on our test. We therefore expect subjects identified as behavioral game theory types to make Phase II choices that are more in concordance with their Phase I choices when compared to unclassified subjects. The flip side of this reasoning is that we aim to determine the success of existing behavioral types in identifying subjects who are using deliberate rules. As such, our approach will allow us to assess the scope for additional behavioral game theory models.

To evaluate whether a subject deliberately uses a deterministic rule, we exploit the expected relationships between Phase I and Phase II choices in our two main treatments. In the Replicate treatment, we expect any subject who uses a well-defined deterministic rule to be able to replicate her past behavior. In the BestRespond treatment, we expect such a subject who, in addition, exceeds a minimal level of strategic reasoning to be able to best-respond to her past behavior. A deliberate subject whose behavior is best described by a rule of thumb (that sidesteps considerations about the opponents’ behavior) may be able to replicate but not best-respond to her former actions.

Our test relies on the assumption that participants recompute their guesses rather than remember their numeric values. In the last part of this section, we show that predictive success in Phase II cannot be explained merely by numeric memory of Phase I guesses. This shows that subjects who are classified as behavioral types are conforming more to actions in line with their former behavior because they are more likely to regenerate their guesses, presumably because they use deterministic rules, rather than because they have “superior” memories. Furthermore, it confirms that subjects who were particularly successful in Phase II but whose Phase I actions were poorly matched by our behavioral models are more likely to represent “omitted types” than arbitrary subjects with particularly good memories.

In this paper, we assess whether a subject behaves in Phase II in concordance with her Phase I guess by using a “guess-level” approach that is “model-free”. Specifically, we assume that the expected relationship between Phase I and Phase II behavior will manifest itself in each game. This model-free approach allows us to analyze whether a Phase II guess conforms to the profit-maximizing choice given the corresponding Phase I guess while remaining ignorant of the rule underlying the Phase I choice. This lets us compare the cross-phase predictability of the group of classified subjects versus the unclassified participants.
4.1 Can Players Replicate their Past Actions?

4.1.1 Classified versus Unclassified Participants

In the Replicate treatment, we have Phase I and Phase II observations for 63 participants. In Phase II, participants are paid as a function of how close their guesses are to the guesses they made in Phase I. We say that a Phase II guess "replicates" the Phase I guess if the Phase II guess is within 0.5 units of the subject’s Phase I guess in the same game. We call a subject a "replicator" if in at least 40% of games (8 out of 20), her Phase II guesses replicate her Phase I guesses. Only 31 of the 63 subjects (49%) meet this criterion. This criterion suggests that only half the subjects may be thought of as consciously and deliberately using deterministic systems of choice that could potentially be uncovered.

Of the 63 subjects in the Replicate treatment, 18 (roughly thirty percent) are classified as matching one of our given behavioral types in Phase I: 5 as L1, 4 as L2, 1 as L3, 6 as EQ, and 2 as D1. We find that 72% of these classified participants are replicators. The proportion of classified level-k or dominance-k types who are replicators (8 of 12) is not significantly different from that of participants classified as the equilibrium type (5 of 6; \(p = 1 \)). All proportion tests in this paper show \(p \)-values of two-sided Fischer exact tests. Of the 45 unclassified subjects, 18 (40%) are replicators. While this is not zero, it is significantly lower than the fraction of classified subjects who are replicators (\(p = 0.01 \)). This suggests, first, that being able to replicate one’s actions is not a trivial task. Second, subjects classified as behavioral types are strictly superior at this task, suggesting that behavioral game theory models have some success in uncovering subjects who use deliberate rules.

To assess the extent to which behavioral models identify participants who deliberately use deterministic rules, note that of the 31 replicators, only 42% are classified in Phase I. Specifically, we have 18 players who match each behavioral model fewer than eight times in Phase I but who replicate 8 or more of their guesses in Phase II. The fact that they can precisely replicate many of their non-behavioral type guesses suggests that these subjects are not merely subjects who play known behavioral rules with noise. Quite the contrary, they seem to be non-noisy followers of unknown rules, suggesting room for new behavioral game theory

21Subject 31 had a computer malfunction and could not finish Phase II; her data is dropped from this analysis.
22That is, \(x_i^{II} \) replicates \(x_i^{I} \) if \(|x_i^{II} - x_i^{I}| \leq 0.5\), where \(x_i^{I} \) and \(x_i^{II} \) are the respective Phase I and Phase II guesses of participant \(i \) in the same game.
23Note that if all a subject recollects is that she played an action that was not dominated, we expect her to replicate only one guess, which corresponds to the game that has a dominant strategy.
24Of the 6 EQ players, one may be a misclassified boundary player.
25Likewise, the 5 L1 subjects are as likely to be replicators (3 out of 5) as the 5 that are L2 or L3 subjects (4 out of 5), \(p = 0.99 \).
26Note that even the 12 classified subjects who are not of the equilibrium type have a higher fraction of replicators (8 of 12) than the 45 unclassified subjects (18 of 45), though the difference is not significant, \(p = 0.12 \).
models to describe these “omitted types”.

In the following paragraphs, we consider several different continuous measures of Phase II performance; we find robustness of our previous finding that classified subjects are better at replicating their behavior than unclassified subjects.

Subjects identified as behavioral types have significantly more replicated guesses compared to unclassified subjects: 11.88 versus 7.22 (p < 0.01). All tests of equality of means in this paper are t-tests. Furthermore, when considering all guesses, classified participants replicate 58% of them, while only 36% are replicated by unclassified subjects. The difference in the replication rate mostly stems from Phase I guesses that are behavioral type guesses. For such Phase I guesses, the replication rate is 73% for classified subjects and 59% for unclassified subjects.\(^{27}\)

We next assess the difference between classified and unclassified subjects by considering how far subjects are from replicating their guesses. For each subject \(i\), we average—over the 20 games—the miss distance \(|x_{II}^i - x_{I}^i|\), where \(x_{I}^i\) and \(x_{II}^i\) are the Phase I and Phase II guesses in a given game. Classified participants have a mean miss distance of 49.13, which is significantly lower than the mean miss distance of 74.28 held by the unclassified subjects (\(p = 0.036\)). This difference is also reflected in the earnings of subjects. Classified participants have 12% higher expected earnings than unclassified participants in Phase II, $34.47 compared to $30.71 (\(p = 0.005\)).\(^{28}\)

The distinction between classified and unclassified subjects also manifests itself in Figure 3 which orders subjects by average miss distance and plots the cdfs of both classified and unclassified participants. Figure 3 shows that the 21 subjects with the lowest miss distances (the lower third) comprise 44 percent of all classified and 29 percent of all unclassified participants. The fact that the cdf of classified participants is above the cdf of unclassified participants reflects that classified participants have lower miss distances. That the cdf of unclassified participants is not too far off the 45 degree line suggests that some unclassified participants are not much worse at replicating their choices compared to classified participants.\(^{29}\)

To compare the miss distances of subjects both within a treatment, but especially across treatments, we introduce a baseline miss distance. A subject who follows the “sophisticated

\(^{27}\) For non-behavioral-type guesses in Phase I, classified participants replicate 23% of guesses, compared to 29% for unclassified subjects.

\(^{28}\) The maximum possible expected earnings in Phase II are $40.00 for both groups of participants, which can be achieved for all possible Phase I actions. Note however that classified participants have significantly lower expected earnings from random uniform play than unclassified participants: $14.90 and $16.17, respectively (\(p = 0.005\)). Both higher average earnings and lower earnings from random play imply that classified participants realize a significantly larger fraction of the gains from optimal play relative to random play than unclassified participants, 78% compared to 60% (\(p = 0.002\)).

\(^{29}\) To provide some idea as to the miss distances, note that the lowest miss distance is 0, that of the 25\(^{th}\) percentile is 36, the 50\(^{th}\) is 61, the 75\(^{th}\) is 91 and the highest miss distance is 211.
Figure 3.—The cdf of the 18 classified and the 45 unclassified participants in the Replicate treatment, ordered by their miss distances. Subject 1 has the lowest miss distance and subject 63 the highest.

Figure 4.—For each subject, we plot the number of Phase II guesses that are replications of the corresponding Phase I guesses as a function of the number of modal type guesses in Phase I.

rule” is a subject who in Phase II has no recollection of the guesses she made in Phase I, apart from the fact that it was not a strictly dominated guess. The sophisticated rule subject then randomizes in Phase II over any guess that is a best response to a surviving Phase I guess. In the Replicate treatment, the sophisticated rule therefore corresponds to randomizing in Phase II over guesses that are not strictly dominated. If subjects were to use the sophisticated rule, the mean miss distance of classified subjects would be 137.58, which is not significantly different from the mean miss distance unclassified subjects would have, 135.81 (p = 0.846).

This suggests that the observed differences in miss distances between classified and unclassified subjects are not mechanically driven by the structure of the games nor their different Phase I actions.\(^\text{30}\)

\[^{30}\text{We can also ask what fraction of reduction in miss distance a subject achieved compared to the sophisticated baseline. We find that classified participants realize a significantly greater fraction of the gains towards optimal behavior than do unclassified participants. A subject who has the same miss distance as the sophisticated baseline has a reduction of 0, while 1 corresponds to a subject whose Phase II choices are payoff maximizing. Specifically, for each game } i, \text{ let } MissDist_i \text{ be the distance between the subject’s Phase II guess and the Phase I guess, and let } Soph_i \text{ be the (expected) distance between the Phase II guess and the Phase I guess under the sophisticated baseline rule. Then, we define } (Soph_i - MissDist_i) \equiv \max\{Soph_i - MissDist_i, 0\} \text{ as the reduction in miss distance of the actual guess relative to the sophisticated baseline in game } i. \text{ A game in which } Soph_i > 0, (Soph_i - MissDist_i) / Soph_i \text{ is a value between 0 and 1 representing the normalized gains a subject made towards optimal play (a miss distance of zero) relative to the sophisticated baseline. } Soph_i \text{ is zero in the game with a dominant strategy. Losses are counted as zero gains. Note that when } Soph_i - MissDist_i \text{ is negative, dividing by } Soph_i \text{ does not normalize the losses to be between 0 and 1, and indeed they can take very high negative valuations, especially when } Soph_i \text{ happens to be small. Since that may distort the measure that considers average gains from the sophisticated baseline towards optimal play, we decided to count losses as zero. For the set of games in which } Soph_i > 0, \text{ we compute the mean of } (Soph_i - MissDist_i) / Soph_i, \text{ yielding a measure of the gains towards optimal play in Phase II relative to the sophisticated baseline. On}
4.1.2 Performance by number of modal type guesses

In the following paragraphs we adopt a more continuous measure of Phase I behavior and show further robustness of our previous finding that classified subjects are better at replicating their behavior than unclassified subjects. Instead of partitioning subjects in Phase I into sets of classified and unclassified participants, we consider how often a subject plays her modal type, i.e., her most frequently played behavioral type. Figure 4 shows that the more modal type guesses a participant makes in Phase I, the more guesses she replicates in Phase II. A regression of the number of replicated guesses in Phase II on the number of Phase I modal type guesses shows a coefficient of 0.670 (s.e. 0.101, p < 0.001) and a constant of 4.347 (s.e. 0.784, p < 0.01). The figure also shows that there are clearly many omitted types: subjects who often replicate their past guesses while having few modal type guesses. That is, a sizable number of subjects seem to play according to rules they can replicate while these rules do not match any of the behavioral models we consider. Precise replication of many guesses suggests that these are not subjects who noisily implement knowns behavioral types, nor are they subjects who simply switch among several known rules.\footnote{Recall that a subject with a low modal type also has few behavioral type guesses.}

The conclusions are mirrored when we consider earnings. A regression of expected earnings in Phase II on the number of modal type guesses in Phase I shows a coefficient of 0.551 (s.e. 0.109, p < 0.01) and a constant of 28.33 (s.e. 0.846, p < 0.01). That is, each additional modal type guess in Phase I is associated with an increase in earnings of about 50 cents.

To summarize, we find that participants classified in Phase I by the method of Section 3 are, to a large extent, able to replicate their past guesses, confirming their behavioral type classifications. Furthermore, as a group, participants who are not classified in Phase I successfully replicate in Phase II at much lower rates, showing that existing behavioral models identify subjects who are more deliberate in their choices. Finally, among participants who are replicators, 42\% are classified, which suggests that quite a few participants who cannot be described by one of our behavioral types are nonetheless playing according to deterministic rules they can replicate. This suggests considerable room for new behavioral types.

\footnote{Recall that a subject with a low modal type also has few behavioral type guesses.}

average, classified participants realize a significantly greater fraction of the gains towards optimal behavior than do unclassified participants, 71.6\% versus 56.9\% (p = 0.009). Furthermore, for each subject we can assess whether their miss distances are significantly different than the sophisticated baseline. Using a significance level of 10\%, all classified subjects have significantly lower mean miss distances than the sophisticated baseline; this is the case for only 82\% of unclassified subjects, a significant difference (p = 0.092). As we might expect, of the 31 subjects who are replicators (successfully replicated in 8 or more games), all have significantly lower miss distances, while this is the case for only 75\% of the 32 non-replicators (p = 0.004).
4.2 Can Players Best-Respond to their Past Actions?

4.2.1 Classified versus Unclassified Participants

While being able to replicate a guess is consistent with the deliberate use of a deliberate deterministic rule, it does not necessarily indicate that a participant forms beliefs about the behavior of the opponent and then best-responds to those beliefs. Indeed, if the interpretation of the level-k type as an “as if” representation of a rule of thumb is accurate, we would expect level-k players to successfully replicate their past actions but not necessarily best-respond to them. This would be also expected if the obtained level k is an indication of cognitive limitations. Most importantly, it remains an open question whether the unclassified replicators (omitted types) are best described by rules of thumb versus strategic rules that involve the formation of beliefs followed by best responses. The goal of the BestRespond treatment is to shed light on these questions.

We have 76 participants in the BestRespond treatment, who, in Phase II, play against their Phase I selves. Specifically, in Phase II, subjects play the 20 games of Phase I (in the same order), but take on the role of their Phase I opponent. A subject’s Phase II opponent is her computer that plays in the participant’s Phase I role and makes her exact Phase I guess. (The subject is informed that the computer is programmed this way, but is not explicitly shown her previous guesses.) We call a Phase II guess a “best response guess” if it is within 0.5 units of the unique best response to its corresponding Phase I guess. That is, x_{II}^i is a best response guess if and only if $|x_{II}^i - BR(x_I^i)| \leq 0.5$, where (i) x_I^i and x_{II}^i are the respective Phase I and Phase II guesses of participant i in the same game $\{[l_1, u_1], t_1; [l_2, u_2], t_2]\$, (ii) $BR(x_I^i) = t_2 x_I^i$ if $l_2 \leq t_2 x_I^i \leq u_2$, (iii) $Br(x_I^i) = l_2$ if $t_2 x_I^i < l_2$ and (iv) $Br(x_I^i) = u_2$ if $t_2 x_I^i > u_2$. A participant is a “best-responder” if in at least forty percent of games her Phase II guess is a best-response guess. Only 31 of the 76 subjects meet this criterion. This suggests that only a small fraction of participants can be thought of as deliberately playing deterministic rules that are best responses to beliefs about the guesses of the opponents.

In Phase I, roughly one-third (26 out of 76) of participants are classified using the method of Section 3; 9 are $L1$, 5 are $L2$, 1 is $L3$, 9 are EQ and 2 are $D1$. We find that 81% of the 26 classified participants are best-responders. Level-k and dominance-k participants are as likely to be best-responders (13 of 17) as are equilibrium participants (8 of 9) ($p = 0.614$). This suggests that the level-k model may be closer to an actual strategic description of behavior as oppose to a mere “as if” representation of a rule of thumb or cognitive limitation.

Only 20% of unclassified subjects (10 of 50) are best-responders. While this is not zero,

32 Of the 9 EQ players, one may be a misclassified boundary player.
33 The 9 $L1$ subjects are somewhat less likely to be best-responders (5 out of 9) than the 6 that are $L2$ or $L3$ subjects (6 out of 6), though the difference fails to be significant, $p = 0.103$.

20
it is significantly smaller than the fraction of classified participants who are best-responders ($p < 0.001$). These results show that behavioral types are not only doing well in this two-phase strategic environment; we see that performing well is difficult.

To assess the extent to which behavioral models capture subjects who successfully best-respond, note that of the 31 best-responders in Phase II, 68% are participants classified as behavioral types in Phase I. This suggests that existing behavioral models are particularly suited in identifying subjects who use deliberate rules that have some degrees of strategic sophistication. We have, in addition, 10 participants who provide exact best-responses to at least 40% of their guesses but who were not classified as any behavioral type in Phase I. These omitted types are prime candidates for being described with new belief-based behavioral game theory models.

In the following paragraphs, we consider several different continuous measures of Phase II performance; we find robustness of our previous finding that classified subjects are better at best responding to their behavior than unclassified subjects.

When we compute the number of times participants best-respond to their past actions, classified participants have, on average have 11.42 best-responses while unclassified participants have only 5.46; this difference is statistically significant ($p < 0.01$). Classified participants best-respond to 57% of all guesses compared to 27% for unclassified participants. This difference is mostly driven by the best-response rate to behavioral type guesses. For such Phase I guesses, the best-response rate is 68% for classified participants compared to 35% for unclassified subjects.

Alternatively, we can assess how well a subject best-responds to her past behavior by measuring how far her Phase II guess (x_{II}^i) lies from the exact best response ($BR(x_{I}^i)$). For each subject i, we average this discrepancy ($|x_{II}^i - BR(x_{I}^i)|$) over the twenty games to compute i’s average miss distance. The mean of classified subjects’s average miss distances is 53.54; this is significantly smaller than the corresponding statistic of 97.90 unclassified subjects ($p = 0.001$). This difference is also reflected in the earnings of subjects: classified participants have 19% greater expected earnings than participants who are not classified (30.13 compared to 25.36, $p < 0.001$).^{34}

For non-behavioral type guesses, the best-response rate is 33% for classified and 25% for unclassified participants. Subject fixed-effects conditional logit regressions confirm that guesses that are classified as best-response guesses are more likely to be best-responded to than are other guesses and that this effect is significantly stronger for participants classified as behavioral types.

While the maximum possible expected earnings in Phase II are $40.00 for both groups of participants, this cannot be achieved for all possible Phase I actions, and differences in Phase I behavior across groups could mechanically produce differences in Phase II earnings. This does not seem to account for the difference we observe. The highest possible expected earnings are $36.14 and $35.94 for classified and unclassified participants, respectively ($p = 0.747$), while those for random play are $18.44 and $18.36 ($p = 0.828$). Classified participants realize 66% of the difference between random play and highest possible earnings, compared to only 38% for participants who are not classified.
In Figure 5, we order subjects by their average miss distances. We then plot the cdfs of both classified and unclassified participants. Figure 5 shows that the 25 subjects with the lowest miss distances (the lower third) comprise 65 percent of all classified and 16 percent of all unclassified participants. The fact that the cdf of classified participants is well above the 45 degree line, while that of unclassified participants is well below, confirms that classified participants, on average, have lower mean miss distances; that is, classified subjects deviate much less from best responses than do unclassified participants.\(^{36}\)

Figure 5.—The cdf of the 26 classified and the 50 unclassified participants in the *BestRespond* treatment ordered by their miss distances. Subject 1 has the lowest miss distance, and subject 76 the highest.

In order to confirm that difference in average miss distances between classified and unclassified participants is not mechanically driven by these groups’ different Phase I choices, we compute, as in the previous section, a baseline miss distance. A subject that follows the “sophisticated” rule best responds to a past self that guesses uniformly at random over the set of Phase I guesses that are not strictly dominated. The sophisticated baseline for classified subjects yields a mean miss distance of 105.03, which is not much lower than the mean miss distance for unclassified subjects using the sophisticated baseline 114.01 (\(p = 0.111\)). That is, the difference in the actual mean miss distances for these groups does not seem to be mechanically driven by differences in the structures of games or their Phase I play.\(^{37}\)

\(^{36}\)To provide some idea as to the miss distances, note that the lowest miss distance is 3, that of the 25\(^{th}\) percentile is 35, the 50\(^{th}\) is 74, the 75\(^{th}\) is 117 and the highest average miss distance is 325.

\(^{37}\)We assess what fraction of the reduction in miss distance from the sophisticated baseline to the optimum (zero miss distance) players achieved. As before, we normalize losses to 0, so that for each game the realized
4.2.2 Performance by number of modal type guesses

As in the Replicate treatment, we can consider how often a subject plays her modal type, i.e., her most frequently played behavioral type. This allows for a more continuous measure of Phase I behavior and lets us investigate the further robustness of our previous finding that classified subjects are better at best responding to their behavior than unclassified subjects. Figure [6] shows that making more modal type guesses in Phase I translates to more best responses in Phase II. A regression of the number of best-responses in Phase II on the number of modal type guesses in Phase I yields a slope coefficient of 0.634 (s.e. 0.092, p < 0.01) and a constant of 3.201 (s.e. 0.756, p < 0.01). Figure [6] also quite impressively shows the existence of subjects who are very good at best-responding to their Phase I guesses but have few modal type guesses. These subjects appear to represent omitted types. The fact that they so precisely best-respond to their guesses suggests that they indeed play omitted rules; they do not seem to implement existing behavioral types with noise.

The conclusions are mirrored when we look at earnings instead of the number of best-response guesses. A regression of expected earnings on the number of modal type guesses a participant makes yields a slope coefficient of 0.501 (s.e. 0.123, p < 0.01) and a constant of 23.60 (s.e. 1.015, p < 0.01). That is, each additional Phase I modal type guess is associated with a 50 cent increase in Phase II expected earnings.

We find that participants classified as behavioral game theory types in Phase I are, to a large extent, able to best-respond to their own past behavior, confirming their behavioral type classifications. This also suggests that the interpretation of behavioral strategies as strategic choices might be more accurate than the interpretation that such models are largely “as if” models or non-strategic rules of thumb. Furthermore, participants not classified in Phase I generally fail to best-respond to their past actions. That is, subjects who match behavioral types are clearly distinguished from those who do not. Finally, among participants who are best-responders, 68% are captured as behavioral types by the classification of Section 3. That is, behavioral strategies capture the majority of subjects who we judge as deliberate and strategic in this setting.

gains are normalized between 0 and 1. We take the average over all games in which the sophisticated baseline yields a strictly positive miss distance and average these measures separately over classified and unclassified subjects. Classified participants realize 68.7% of the gains towards optimal performance in Phase II relative to the sophisticated baseline, while this value is only 44.9% for unclassified participants (p < 0.001). Furthermore, for each subject we can assess whether her miss distance is significantly different (smaller) at the 10% level than the sophisticated baseline. Of the 26 participants whose Phase I behavior classified them as behavioral types, 77% have significantly less noise in Phase II than had they used the sophisticated rule in Phase II. This is a significantly higher percentage than the 46% of the 50 unclassified participants (p = 0.014). As expected, of the 31 subjects who were classified as best-responders, 87% have significantly smaller mean miss distances than the sophisticated baseline, compared to only 36% of the 45 non-best-responders (p < 0.001).
There are, however, some omitted types (unclassified best responders), which suggests there is some room for additional strategic behavioral models. Note that the level k model captures about two-thirds of classified behavioral types, and behavioral types (including the equilibrium type), represent about two-thirds of “strategic” subjects. So, even if all strategic omitted types could be explained by a single new behavioral model, that new model (in our data) would capture fewer participants than does level k. In other words, our data predict that a new model cannot be as successful as level k in capturing strategic types in two-player guessing games.

4.3 Are Many Deterministic Rules Strategic?

The goal of this section is to assess the extent to which subjects are more successful in replicating than best-responding to their past guesses. There are two reasons why replicating a guess may be easier than best-responding to it. While replicating a guess is clearly a necessary first step for best-responding to it, the latter entails that the subject also be aware that her action in a game should depend on her beliefs about the action of the opponent. A participant who uses a rule of thumb may never actually think about the opponent. She may not value the following information: the other player in Phase II of the BestRespond treatment is her computer who makes the subjects’ exact Phase I guesses. Therefore, subjects who use rules of thumb may be able to replicate their guesses but fail to make the strategic leap that is necessary to best-respond to them.

A more mundane reason why best-responding is harder than replicating is that subjects now have an additional opportunity to make computational errors; once they compute the replications, they additionally must calculate the best responses. Note, however, that we find that subjects make virtually no mistakes when computing the best responses to guesses. As noted in Section 3, out of 600 times that subjects are tasked with responding to shown guesses, all but 6 are within 0.5 units of the best response.

4.3.1 Classified Participants

We first focus on classified participants, that is, participants who have guesses of the same behavioral type in 40% or more of the games (in Phase I). We saw that 72% of classified subjects are replicators and 81% are best-responders. This difference is not significant ($p = 1$). The number of Phase II guesses that correspond to the predicted guesses given the Phase I behavior is similar across treatments; it is 11.42 for subjects in the BestRespond treatment and 11.56 for subjects in the Replicate treatment ($p = 0.928$).

38 Across the two treatments, classified participants have about the same number of Phase I guesses that are classified, 13.88 for subjects in the BestRespond treatment and 13.83 for subjects in the Replicate treatment,
For a continuous measure, we report the mean miss distances of classified participants in the *Replicate* and the *BestRespond* treatments in Table 4 below. Classified participants have about the same mean miss distances in both treatments. For classified participants, best-responding to Phase I guesses seems no more difficult than replicating them. This suggests that not only the equilibrium type, but also the much more prevalent level k types are probably best thought of as strategic types rather than rules of thumb.

<table>
<thead>
<tr>
<th></th>
<th>Replicate</th>
<th>BestRespond</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classified Subjects (N)</td>
<td>18</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Miss Distance</td>
<td>49.13</td>
<td>53.54</td>
<td>0.750</td>
</tr>
<tr>
<td>Unclassified Subjects (N)</td>
<td>45</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Miss Distance</td>
<td>74.28</td>
<td>97.90</td>
<td>0.021</td>
</tr>
</tbody>
</table>

Table 4.—Classified subjects: mean miss distances across treatments. The last column shows the p-values of two-sided t-tests of equal means across treatments.

4.3.2 Unclassified Participants

For subjects who are not classified in Phase I, we find that 39% are replicators, while only 20% are best-responders ($p = 0.046$). On average, unclassified subjects best-respond to significantly fewer guesses than they replicate: 5.46 compared to 7.24 ($p = 0.028$). This difference is not driven by a difference in the number of behavioral type or modal-type guesses in Phase I across the *BestRespond* and *Replicate* treatments.

Finally, we can compare the miss distances of subjects not classified in Phase I across treatments. In concordance with the results so far, unclassified participants in the *Replicate* treatment average significantly smaller miss distances than unclassified participants in the *BestRespond* treatment; the difference is almost 25%.

Furthermore, they realize about the same gains towards optimal play relative to the sophisticated baseline (see (Soph-Miss Dist.)/Soph). The sophisticated rule has a miss distance of 137.58 in the *Replicate* treatment and a miss distance of 105.03 in the *BestRespond* treatment, $p = 0.000$. For (Soph-Miss Dist.)/Soph) the numbers are 0.716 and 0.687, respectively, $p = 0.656$.

Even when we just concentrate on L_1, or on all L_k types, such types are as likely to be best-responders as they are to be replicators across treatments: 5 of 9 and 3 of 5 ($p = 1$) for L_1 and 11 of 15 and 7 of 10 ($p = 1$) for L_k types.

In Phase I of the *BestRespond* treatment, unclassified subjects average 5.26 behavioral type guesses and 3.98 modal-type guesses, which is not significantly lower than the corresponding 4.89 ($p = 0.464$) and 3.71 ($p = 0.480$) measures from the *Replicate* treatment.

Note that this is the reverse of the relationship between the sophisticated baseline measures, which suggests that this difference in actual miss distances is not mechanically driven by the structures of the games or tasks across treatments. The sophisticated rule has a miss distance of 135.81 in the *Replicate* treatment and of
That for unclassified subjects replicating past behavior is so much easier than best-responding to it, and that there are fewer best-responders than replicators, suggests that some of the omitted types may be better described by rules of thumb than by strategies that entail best responses to beliefs.

4.4 Playing according to a rule, or simply remembering guesses?

One interpretation of participants replicating and best-responding to guesses is that they re-apply their original deterministic rules to recompute their former guesses. However, it could be that some participants merely have good numerical memories. In the Memory treatment, we provide a benchmark for how easy it is to remember 20 guesses that do not result from any deliberate rule. To this end, in Phase I of the Memory treatment, participants play the guessing games against computers that make random guesses. Notably, a subject sees her computer’s guess before making her own guess. Like in Phase I of the other treatments, subjects are paid as a function of how far their guesses are from their goals. In Phase II of the Memory treatment, participants are tasked with replicating their Phase I guesses (of course, without being shown these guesses).

As in our other treatments, we use a 0.5 unit window to determine whether or not an individual “remembers” a guess; we say a subject is a “rememberer” if she remembers 8 or more Phase I guesses. In Phase II of the Memory treatment, subjects remember between 1 and 7 guesses, so we find no “rememberers”. On average, subjects remember 3.9 guesses out of 20. To assess that number, we compute the expected number of guesses that a subject with no numerical memory should be able to remember if she only recalls that, in Phase I, she best responded to her computer that chose a guess uniformly at random over the action set. For each game, this reasoning generates a unique action in Phase II that maximizes expected earnings. If all 20 subjects would have used this scheme, they would remember 2.8 guesses on average. Note that while not much smaller, this is significantly different than the mean of 3.9 remembered guesses ($p = 0.03$).

Finally, we can compare how well subjects perform in the Memory and Replicate treatments. While 31 out of 63 subjects replicate 8 or more guesses and hence are replicators, no subject in the Memory treatment remembers 8 or more guesses ($p < 0.01$). The mean number of remembered guesses in the Memory treatment (3.9) is also significantly lower than the mean of 11.4.01 in the BestRespond treatment ($p = 0.000$). Similarly, unclassified subjects in the Replicate treatment realize more of the gains towards optimal play relative to the sophisticated baseline compared to unclassified participants in the BestRespond treatment. (Soph-Miss Dist.)/Soph has a value of 0.569 in the Replicate and of 0.449 in the BestRespond treatment ($p = 0.003$).

\[^{43}\text{When considering the distribution of \# remembered guesses - \# guesses remembered using the optimal no-memory scheme, the mean is 1.1, standard deviation is 2.23, and minimum and maximum values are \(-4\) and 5.}\]
average number of replicated guesses (8.5) in the \textit{Replicate} treatment ($p < 0.01$). Subjects in the \textit{Memory} treatment even remember fewer guesses than unclassified subjects replicate (7.24) in the \textit{Replicate} treatment ($p = 0.001$). A comparison to the \textit{BestRespond} treatment yields similar results.\footnote{In the \textit{BestRespond} treatment, 31 out of 76 subjects are best-responders, a significantly greater proportion than the 0 rememberers out of 20 subjects ($p < 0.01$). The mean number of best-response guesses, 7.5, is also significantly greater than the mean of 3.9 remembered guesses from the \textit{Memory} treatment ($p < 0.01$). Subjects in the \textit{Memory} treatment are even worse at remembering guesses than unclassified subjects are at best-responding to them in the \textit{BestRespond} treatment, as they average 5.46 best-response guesses compared to 3.9 remembered guesses out of 20 ($p = 0.07$).}

In sum, participants who perform well Phase II of the \textit{Replicate} and \textit{BestRespond} treatments are unlikely to be exceptional in numerically remembering arbitrary Phase I play. Rather, their Phase II success likely comes from reimplementation of deterministic Phase I rules.

4.5 Explaining Unclassified Subjects

Our experimental design allows us to identify subjects that can replicate and best respond to their past behavior, even when we fail to capture that initial behavior with existing models. Such subjects are prime candidates for having deliberate rules that govern their Phase I choices. The goal of this section is to shed more light on the behavior of the 18 unclassified replicators and 10 unclassified best-responders. We employ three strategies to understand these 28 “omitted types”. To describe our approach, let $L_1(x)$ be the strategy that best responds to the guesses of subject x or a strategy x. Generally, $L_k(x)$ is the strategy that best responds to $L_{k-1}(x)$. Let $invL_1(x)$ be the strategy such strategy x is a best response to $invL_1(x)$. Generally, $invL_k(x)$ be the strategy such that $invL_{k-1}(x)$ is a best response to $invL_k(x)$.

The first strategy to uncover omitted types is to note that for the behavioral types we considered, namely \textit{EQ}, L_1, L_2, L_3, D_1 and D_2, we did not fully exhaust the existence of participants who either play a best response to those types or subjects whose play is such that those types are a best response to that subject. We therefore iterate “up” and “down” for the level-k model, and most importantly for the D_k model.

Our second approach is to assess the extent to which omitted types use strategies that would be in a “cluster”. We consider two subjects to be in the same “cluster” if they either employ the same strategy, or if the strategy of one participant is a best response (or a best response to a best response) to the strategy of the other participant.

Finally, we try to directly understand the behavior of some participants who are omitted types, and check how many of the participants in their cluster are also omitted types rather than subjects who are below the 40% threshold of replicating or best responding to their
guesses, respectively.

4.5.1 Iterating “Upwards” and “Downwards” Using $L1 - L3$, $D1$ and $D2$

While clearly generating $Lk(EQ)$ or $invLk(EQ)$ won’t generate new types, we test whether we have subjects who play $L1(L3) = L4$ or $L2(L3) = L5$ as well as $invL1(L1)$, that is participants who actually play the midpoint of their guessing range and $invL2(L1)$. We have no participant who are classified as these types, that is have 8 or more of their guesses within 0.5 units of any of these types.

For one model we have not checked at all whether there are participants who either best respond to subjects using these models, or whether these models are best responses to the play of others, namely the dominance-k model. Recall that $D2$ is not the best response to $D1$. We check for the presence of players who best respond to $D1$ and $D2$, or best respond to behavior that best responds to $D1$ and $D2$, but do not find any (DAN: TRUE FOR L2(Dk)?). We then check for subjects who are playing the “inverse” of $D1$ or $D2$. We find one subject (Subject 80), who plays the $invL1D1$ 11 times by guessing the midpoint of her range of undominated guesses. That subject was classified as a best responder and hence is an omitted type. We do not find any participants who use $invL2D1$ or $invL2D2$. (DAN: TRUE).

The analysis so far shows that many replicators or best responders clearly use strategies that are not in a cluster with the behavioral game theory models we considered.

4.5.2 A Pseudo-Type Analysis

To assess whether a significant fraction of omitted types use the same strategy, or a set of strategies that share the recursive best response feature of the level-k model, we use a pseudo-type analysis inspired by CGC. Specifically, take a subject i. We ask whether a subject j could be classified as pseudo-type $i – (PTi)$ – that is whether 8 or more guesses of participant j are within 0.5 units of subject i’s guesses in that game. Basically, if several participants use the same strategy, such a strategy would be a good place to start searching for new behavioral game theory model. We then go a step further and ask not only whether there is a participant who would be classified as (PTi), but whether we have participants who would be classified as $L1(PTi)$ or $invL1(PTi)$. In fact we assess this for $Lk(PTi)$ or $invLk(PTi)$, for $k = 1, 2, 3, 4$. To assess the likelihood of such an approach to find clusters in case they exist, we use this approach not only on the 28 omitted types, but on all 150 subjects, the 64 in the Replicate, the 76 in the BestRespond and the 10 subjects in the ShowGuesses treatment.

We find that 63 (???) subjects are part of pseudo-type clusters. Indeed, of the 45 subjects classified as behavioral game theory types, 43 are in pseudotype clusters. We miss one $D1$
subject. Note, however, that we have only 4 D1 subjects, and of those 3 are playing the games as P1 and 1 as P2. Since we have only one symmetric game and only 4 games are played from both sides, a threshold of 5 will not identify the D2 subject who played as P2 to be in the same cluster as the D2 subjects who play as P1, even if they each perfectly implement D2. We also miss one L2 subject. The remaining 43 classified behavioral game theory types are in XX clusters.

CGC employs a clever method to try determine whether unclassified subjects are more or less likely to be using deliberate rules. They ask whether a subject behaves similarly to another who played the same set of games. We borrow their approach to create 150 “pseudo-types” (PT1 through PT150), one for each subject who partook in the main Phase I of our experiment. Each pseudo-type is defined by the guesses that the subject made. For example, a subject is classified as a PT23 player if and only if, in 8 or more games, she makes guesses that are no more than 0.5 units away from the corresponding guesses made by Subject 23. By construction, Subject i could be “tautologically” classified as a PTi player. We thus do not consider these cases.

Using our 150 Pseudo-Types, we investigate not only whether each Subject i is a PTj player (for all i ≠ j), but also, if Subject i is a L1(PTj), L2(PTj), L3(PTj) or L4(PTj). When we perform such an analysis, we find that 63 subjects in total, can be explained. 45

Of the 63 subjects, 53 are classified as one of our six original behavioral types, one of our nine BDR types, or one of our Lk(BDRx) or invLk(BDRx) types. Of the 10 additionally explained types, 3 are replicators (Subjects 9, 49 and 53) and none are best responders. Furthermore, six can be described by only three decision rules (two subjects per rule). In other words, the decision rules of these 10 subjects are explainable using 7 decision rules as explained in Table 5.

<table>
<thead>
<tr>
<th>Subject ID #</th>
<th>9</th>
<th>13</th>
<th>16</th>
<th>49</th>
<th>53</th>
<th>54</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>L2(PT23)</td>
<td>PT67</td>
<td>PT84</td>
<td>PT110</td>
<td>PT136</td>
<td>PT141</td>
<td>PT122</td>
</tr>
<tr>
<td># of Type Guesses</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 5.—7 of the 10 subjects are listed in the table. The remaining 3 are Subjects 67, 110 and 136. These subjects’ types can be deduced from the table as being PT13, PT49 and PT53, respectively. (Subject 9 also has 8 L2(PT26) guesses, 8 L2(PT34) guesses, 8 L2(PT61) guesses, 8 L2(PT67) guesses and 8 L3(PT142) guesses.)

45We also check whether a Subject i, for all i ≠ j, is an invL1(PTj), invL2(PTj), invL3(PTj) or invL4(PTj) and find 59 subjects can be explained, but none of these are in addition to the 63 subjects explained using the “upward” approach.
4.5.3 Nine “Baseline Decision Rules” (*BDR1* through *BDR9*)

As a primary step to finding omitted types, we consider the possibility that some may be described by one of these three nonstrategic rules of thumb: playing the lower-bound, the midpoint or the upper-bound of one’s guessing range. When investigating whether any subjects have 8 or more phase I guesses that coincide with one of these three rules of thumb, we find that there is 1 unclassified subject that guesses the lower bound 10 times in phase I. Thus, we find some (weak) evidence of a “lower bound type”. We find no “midpoint types” or “upper bound types”.

As a secondary step, we consider the following statistic for each subject who participated in the *Replicate* and *BestRespond* treatments: the number of replicated or best-response guesses in phase 2 minus the number of modal type guesses in phase I. The larger this difference is for a subject, the more likely this subject is to have used a deliberate deterministic strategy in phase I that we do not (yet) understand. We thus order these subjects according to this statistic and, one at a time, search for decision rules that can explain the subjects’ guesses, starting with the subject for whom this statistic is the largest.

This approach allows us to uncover six additional decision rules. We combine these six rules with the three rules of thumb (lower bound, midpoint and upper bound) to form nine “Baseline Decision Rules (*BDR1* through *BDR9*)”\(^{46}\). Some of these rules are relatively simple: guessing one’s lower bound. Others are rather intricate: guess the midpoint of (i) the upper bound of my range of undominated guesses and (ii) the lower bound of your range of undominated guesses and. The full description of the nine Baseline Decision Rules can be found in the Appendix.

For each subject in the *Replicate*, *BestRespond* and *ShowGuesses* treatment, we can count the number of guesses that are *BDR1* through *BDR9*. We find 12 subjects—all originally unclassified—with at least 8 guesses of a given *BDRx* type \(x \in \{1, \ldots, 9\}\) and thus can be classified as a *BDRx* type.\(^{47}\) We see that some subjects are classified as the same *BDRx* type, and hence, have behavior that is not purely idiosyncratic.

4.5.4 Iterating “Upwards” Using the Nine Behavioral Decision Rules

Given there exist subjects who are classified as *BDR1* through *BDR7*, there may also exist individuals who believe their opponents are one of these types. (For completeness we include the possibility that an individual believes her opponent is *BDR8* or *BDR9*. Thus, we can

\(^{46}\)Even though no subjects are found to be “midpoint types” or “upper bound types”, we include these decision rules in *BDR1* through *BDR9* since we will later check whether there are some individuals who implement strategies that involve best responding to the belief that their opponents are one of these types.

\(^{47}\) Nine of these 12 subjects are either unclassified replicators or unclassified best-responders.
Table 6.—The 12 subjects who can be classified as BDR_x for some $x \in \{1, \ldots, 9\}$ according to their Phase I behavior. All of these subjects are unclassified in terms of our original 6 behavioral types, and thus, we are explaining 12 previously unexplained subjects. Nine of these 12 subjects are either unclassified replicators or unclassified best-responders. Subjects with ID numbers 1-64, 65-74 and 75-150 are from the Replicate, ShowGuesses and BestRespond treatment, respectively.

<table>
<thead>
<tr>
<th>Subject ID #</th>
<th>25</th>
<th>28</th>
<th>40</th>
<th>42</th>
<th>56</th>
<th>64</th>
<th>84</th>
<th>93</th>
<th>100</th>
<th>104</th>
<th>112</th>
<th>139</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of x for BDR_x</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td># of Type Guesses</td>
<td>9</td>
<td>19</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>15</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>17</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

compute the best response to the belief that one’s opponent is a BDR_x type; we call this new type $L_1(BDR_x)$. We can check for the presence of $L_1(BDR_x)$ types for all of our nine values of x. Furthermore, we can continue this level-k approach and compute the best response to the belief that one’s opponent is a $L_1(BDR_x)$ type; we call this new type $L_2(BDR_x)$. We can check for the presence of $L_2(BDR_x)$ types for all of our nine values of x. With this procedure, we are able to explain 4 additional subjects (i.e., subjects who are not able to be classified as being any of our six original pre-specified types, nor as being any of our nine BDR_x types). These 4 subjects are shown in Table 7; two are $L_1(BDR_x)$ types and two are $L_2(BDR_x)$ types. We find no $L_3(BDR_x)$ types.

Table 7.—Each of these 4 subjects are unclassified in terms of our original 6 behavioral types and also unclassified as BDR_x types, and thus, we are explaining 4 previously unexplained subjects. BDR_8 is the Baseline Decision Rule described by guessing one’s upper bound. Thus, while there are no “upper bound types”, Subject 90 believes her opponents are such types. Furthermore, Subjects 55 and 96 believe their opponents are like like Subject 90. Thus, there is some evidence of an alternative Level-k model where Level-0 is the upper bound. There is also some evidence (albeit weaker) of an alternative Level-k model where Level-0 is the lower bound: BDR_6 is the Baseline Decision Rule described guessing one’s lower bound and we see that Subject 76 is a $L_1(BDR_6)$ player.

<table>
<thead>
<tr>
<th>Subject ID #</th>
<th>55</th>
<th>76</th>
<th>90</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>$L_2(BDR_8)$</td>
<td>$L_1(BDR_6)$</td>
<td>$L_1(BDR_8)$</td>
<td>$L_2(BDR_8)$</td>
</tr>
<tr>
<td># of Type Guesses</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

4.5.5 Iterating “Upwards” Using the Nine Behavioral Decision Rules

In the previous sections, we uncovered some additional decision rules (BDR_1 through BDR_9) and asked whether there were $L_1(BDR_x)$ subjects who best responded to the belief that they were playing against these subjects. We then asked whether there were some $L_2(BDR_x)$ subjects who best responded to the belief that they were playing against $L_1(BDR_x)$ subjects.
While this iteration proved useful (it uncovered 4 additional types), it involved an “upward” approach similar in fashion to level-\(k\). A key difference, however, between, say, a \(L1(BDRx)\) type and a “traditional” \(L1\) type, is that the type to which each is best responding is markedly different. A \(L1\) type is best responding to the belief that her opponent is a nonstrategic \(L0\) player, i.e., an opponent who’s decision is not a best response to a belief. On the other hand, a \(L1(BRDx)\) type is best responding to the belief that her opponent is \(BDRx\) player who may be strategic, i.e., an opponent who’s decision may indeed be a best response to a belief.

Put differently, it could very well be the case that some number of the 12 subjects classified as \(BDRx\) types are forming beliefs and best responding to them. These beliefs, furthermore, may be partially accurate, in that there may be individuals in the population who behave in ways that generate \(BDRx\) behavior as best responses, behavior which we will denote as \(invL1(BDRx)\). We find that Subject 29 has 8 \(invL1(BDR6)\) guesses; she is classified as a type for which \(BDR6\) is the best response. Similarly, we can define \(invL2(BDRx)\) types as those who generate best responses of \(invL1(BDRx)\), but we find no such types.

4.5.6 Iterating “Upwards” and “Downwards” Using \(D1\) and \(D2\)

While we asked whether there existed types that best respond to our \(BDRx\) types as well as types that generate \(BDRx\) behavior as best responses, we have not asked this question for our six pre-specified types. By definition, \(EQ\) is a best-response to itself and hence also generates itself as a best response; thus, there is no moving upwards or downwards from \(EQ\). For \(k \geq 1\) in the level-\(k\) model, moving upwards means checking level \(k + 1\) and moving downwards means checking level \(k - 1\), hence moving upwards and downwards still stays within the level-\(k\) model. This is is not the case, however, for the dominance-\(k\) model; for example, \(D2\) is not the best response to \(D1\). We check for the presence of players who best respond to \(D1\) and \(D2\), but do not find any. However, when we check for subjects who are playing the “inverse” of \(D1\) or \(D2\), we find that 1 subject (Subject 80), plays the inverse of \(D1\) 11 times by guessing the midpoint of her range of undominated guesses.

4.5.7 Summarizing Our Analysis of Additional Types

We use a variety of procedures to try to describe unclassified participants. Of the 28 unclassified replicators and best responders, we are able to uncover 11 of their specific rules. Furthermore, we are able to identify 2 replicators with behavior that matches the behavior of other participants, and one replicator who plays the Level-2 best response to a the behavior defined by the play of another participant. In addition, we are able to explain, with specified

48We stopped our earlier analysis at \(L3\) since we found only 2 \(L3\) subjects and 0 \(L4\) subjects.
new rules, 7 additional unclassified subjects. We are also able to identify 7 more unclassified
subjects with behavior that matches that of other participants.

While our analysis suggests room for additional game theory models, the subjects that we
are able to describe generally are not unifiable with a single iterative stepwise model, such
as level-k. In other words, taking one of our new types, it is generally not possible to reach
another one of our new types via iterative best responses to the original type’s behavior. Thus,
explaining these new subjects requires us to construct multiple models. It seems as though
any new model as parsimonious as level-k could only have a fraction of the success that the
level-k model has in explaining behavior.

5 Related Literature, Methodological Remarks, and Discussion

The core approach of empirical game theory consists of observing strategic choices in specific
settings. This has proven sufficiently powerful to topple several important null hypotheses, in-
cluding the canonical model of unanimous Nash equilibrium play. However, these conventional
strategic choice experiments offer limited power for delineating the set of subjects who play
according to strategic models or determining the stability of behavior across strategic settings.
In this section, we review previous methods and efforts to assess the stability of behavior and
capture additional information on the processes generating strategic choices.

While the papers cited below have other valuable aspects we lack the space to discuss, we
focus on the parts of papers that help determine the set of subjects who use deliberate rules
and assist in understanding what sorts of rules these are; furthermore, we isolate aspects that
concern the stability of behavior across settings, or, in other words, the degree of predictability
of the behavior of subjects. We contrast these approaches with our design.

The most straightforward approach to assessing whether a subject identified as a certain
behavioral type is “correctly” classified is to determine the stability of behavior out-of-sample.
One possibility is to perform this exercise on the population level using different samples. This,
however, does not guarantee that play is predictable on an individual level. There are a couple of
reasons why predicting play on the individual level is desirable. First, this may provide a more
convincing test that the classification of a subject to a specific behavioral type is not erroneous.
Second, we may aim to use individual characteristics such as demographics and intelligence
measures to predict play. For approaches in this direction, see Burnham et al. (2009) for a
positive correlation between depth of reasoning and IQ style measures, as well as Georganas
et al. (2013) for a correlation of play with a CRT measure and Agranov, Caplin and Tergiman
(2012) for a correlation between sophistication in the guessing game and a Monty Hall game.
Another example is Coricelli and Nagel (2009), who correlate brain imaging results with depth of reasoning in a guessing game. Most research on stability of rules within individuals has focused on comparing behavior across strategic settings. Crawford and Iriberri (2007) look at various hide-and-seek games and find some consistency across games. On the other hand, Buchardi and Penczynski (2011) and Georganas, Healy, and Weber (2010) do not find strong consistency of play across guessing and hide-and-seek or “undercutting” games, respectively.

Failure to find type stability within a subject across strategic settings could be attributed to the subject being “erroneously” classified as a certain type. However, a lack of stability of a behavioral type can also be attributed to subjects having different beliefs about the behavior of others across different types of games. This poses inherent problems to out-of-sample predictions for models such as level- \(k \) of which one interpretation is that subjects best-respond to erroneous beliefs. Indeed, our results from the \textit{BestRespond} treatment suggest that level- \(k \) subjects are in general not rule of thumb players. There are several recent results that suggest that level- \(k \) subjects may not merely be rule of thumb players, Arad and Rubinstein (2012) and Agranov, Caplin and Tergiman (2012) (see also Georganas et al. (2013) below).

To more precisely pin down rules underlying choice, researchers have worked to observe what parameters of a game are considered by subjects by hiding them and having subjects uncover each one individually (see Camerer et al. (1993), Costa-Gomes, Crawford, and Broseta (2001), Costa-Gomes and Crawford (2006), Brocas et al. (2010), and Wang et al. (2010). While this data can be very valuable and can rule out certain models of behavior, these approaches may not be inert with respect to the subjects’ deliberations and could alter the strategic choice behavior we hope to observe.

Alternatively, researchers have tried to assess the thought processes with which decisions are reached through various communication devices. Most prominent is Burchardi and Penczynski

\footnote{An alternative method to assess type stability is to perform a hold-out prediction. This has been surprisingly unusual in the present literature with the exception of Stahl and Wilson (1995). They select a subset of games, estimate the subjects’ type, and using the remaining games in addition, provide an estimate of the posterior probability that a subject has that particular type. When classifying a subject as stable if the posterior probability of having the same type is at least a (perhaps too modest) 15 percent, they find that 35 of 48 subjects are stable.}

\footnote{Predictions would be more straightforward if those models were “as if” representations of rules of thumb.}

\footnote{Arad and Rubinstein (2012) consider two versions of a game that only differ in the salience of \(L_0 \) play. They find that while this manipulation does not increase the overall use of actions consistent with level \(k \) (for \(k > 0 \)), it increased the frequency of actions associated with low levels of \(k \). This is expected if the manipulation shifted not only the actual, but also the believed amount of \(L_0 \) play. Agranov, Caplin and Tergiman (2012) observe choices in a version of the classic \([0, 100], 2/3\) guessing game. Subjects aim to guess \(2/3 \) of the mean of 8 subjects who have already played the game. The innovation in that paper is to observe choices over the course of 3 minutes, where the decision at any second is potentially payoff relevant. They claim that about 57% of subjects are “strategic”. Their choices average around 34 over the whole 3 minutes, but fall over time. Remarkably, they classify roughly 43% as naïve - a fraction close to our findings. These subjects not only make average choices of 50 throughout the three minutes, their choices also do not fall over time.}
(2012), where each of the two players in a team is randomly chosen to decide for the team. Before submitting choices, a subject can send a suggestion with explanations to her teammate. They find that roughly one third of subjects are non-strategic \(L_0\) players (see also Ball et al., 1991 and Sbriglia, 2008). Unfortunately, there is again a concern that the experimental paradigm may alter behavior.

Another approach has exploited the interpretation that behavioral models often rely on subjects holding erroneous beliefs about others, but that subjects otherwise behave in a profit maximizing way. This allows experimenters to assess those beliefs directly and check for payoff-maximizing behavior. Costa-Gomes and Weizsäcker (2008) show that elicited beliefs systematically conflict with their subjects’ strategy choices; the beliefs suggest a greater strategic sophistication than the observed choices. In that vein, Bhatt and Camerer (2005) show differences in patterns of brain activation for corresponding belief elicitation and strategy choice tasks. One potential problem with this approach is that beliefs are in general elicited coincidentally with strategic choices, and as such may alter strategic thinking.\footnote{Several papers find that eliciting beliefs significantly alters play, see e.g. Rüstrom and Wilcox (2009), Erev, Bornstein, and Wallsten (1993), Croson (1999) and (2000), and Gächter and Renner (2010). Others fail to reject the null hypothesis that play is not affected by eliciting beliefs, e.g. Nyarko and Schotter (2002), and Costa-Gomes and Weizsäcker (2008).} Alternatively, researchers have manipulated beliefs to determine whether the behavior of subjects changes accordingly. Georganas et al. (2013) manipulate subjects’ beliefs about the strategic capacity of their opponent by providing information on their score on a battery of cognitive tests. They found that only some subjects adjust behavior in the expected direction. One possible explanation for the lack of change in behavior in the expected direction is that subjects—just like the authors—believe that the depth of reasoning of their opponent does not necessarily only depend on the cognitive abilities of the opponent, but rather on her beliefs about the degree of sophistication of others.

There is another paper, Ivanov, Levin, and Niederle (2010), that is initially similar to the present paper but reaches very different conclusions. Pairs of subjects bid in a common-value second-price auction. The experimenters first elicit the bid function in Phase I and observe, as expected, many subjects overbidding and facing the winner’s curse, consistent with cursed equilibrium or a level-\(k\) model. Subjects then, in Phase II, face an additional set of auctions where the other player is replaced by an automaton that uses the subjects’ Phase I bid function. They find that the Phase II bid function is not generally a best-response to the Phase I bid function. This is the case even though the subject gets to see her Phase I bid function while making her Phase II bids; that is, their experiment corresponds to our \textit{ShowGuesses} treatment. It appears that in their common-value second-price auctions, subjects simply cannot (or are not willing to) compute best-responses to given bid functions. As such, their environment
may be less amenable to models in which subjects hold erroneous beliefs about others, while behaving in payoff-maximizing ways given their beliefs. In our paper, we found that subjects are perfectly able to compute best-responses to given guesses; maintaining this assumption, our Replicate and BestRespond treatments then help elucidate the subjects’ processes of strategic choice.

The main advantage of the approach we take in this paper is that if subjects are playing according to a behavioral game theory type, we have precise expectations of their future play. A failure to comply with expected behavior in the Replicate treatment cannot be rationalized by, for example, subjects believing that as the number of games increases the opponent plays in a different way. Our two treatments are also uniquely suited to elucidate whether behavior that conforms with the level-k model (and dominance-k) is more likely an as if representation arising from a rule of thumb than an accurate description of participants strategically best- responding to non-equilibrium beliefs. Despite the precise test of whether subjects truly use a deterministic rule, we find very strong evidence and support not only for the equilibrium but also the level-k model.

6 Conclusion

To date there has not been a practical way to organize players according to whether they implement deliberate decision rules, especially if we haven’t behavioral models to explain their behavior. In this paper we say that a subject deliberately employs a well-defined rule if the behavior of the subject conforms to an expected relationship across strategic situations. We provide an environment and a test that allow us to identify such behavior, enabling us to relate existing behavioral game theory types with the set of subjects that use deterministic rules.

We augment choice data from a conventional strategic choice environment with information from treatments pitting subjects against their past behavior. We observe subjects’ choices in two-player “guessing games”; we then surprise subjects by placing them in strategic situations where blue each subject’s optimal action depends solely on her own previous choices. Subjects’ behavior in the second phase of the experiment reveals the extent of their knowledge regarding how they arrived at their previously-made strategic choices. The design of our experiment allows us to provide a lower bound of how many subjects deliberately use deterministic rules.

The first environment where we assess this is the Replicate treatment, where we determine whether subjects can recreate their own actions in games. In a way, we assess whether subjects are predictable to themselves. Using specific thresholds to classify an action in a game as a replication and to identify subjects who are able to replicate their behavior, we found that roughly half the participants are replicators. The level-k model, jointly with equilibrium
and the dominance-\(k \) model, account for one-third of subjects (of whom three-quarters are replicators). This suggests that there is noticeable room for additional behavioral models in accounting for subjects who are able to replicate their behavior.

In the BestRespond treatment, we require subjects to show strategic sophistication. We do this by paying subjects depending on how close they are to best-responding to their former actions. We find that there are much fewer subjects who are strategic than simply able to replicate their behavior. While only about 40\% of subjects are best-responders, behavioral types comprise two-thirds of such subjects. Furthermore, behavioral types seem equally able to replicate and best-respond to their actions, while this is not the case for subjects not classified as behavioral types.

Overall, our results show that while equilibrium is able to account for two-ninths of strategic subjects, adding the level-\(k \) model brings this to almost two-thirds. We also have a small number of dominance-\(k \) subjects. Therefore, behavioral game theory has been quite successful in identifying strategic subjects. When considering only subjects who use well-defined deterministic rules they are able to replicate (rule-of-thumb players), there seems to be much more room for new behavioral models.

Lastly, this paper is also part of a small literature that tries to understand the “when” and “how” subjects think about opponents and contingencies (see Esponda and Vespa, forthcoming). We believe that our paper opens many avenues for future research. While we found type stability in our experiments, the stability of behavior across different types of games remains still unresolved. The results from our paper suggest that behavioral types are better interpreted as forming erroneous beliefs and best-responding to those beliefs than playing rules of thumb. As such, stability may only be found when assessing whether subjects are strategic per se.

7 References

the bilateral winner’s curse,” *Organizational Behavior and Human Decision Processes*, 48(1), 1-22.

Appendix

8.1 Classified Subjects: Comparison with CGC

We found that 30% of participants are classified using the apparent type method. While we use the same apparent type classification method as CGC, they have significantly more subjects classified as behavioral types, 49% ($p = 0.005$). Table 8 shows the fraction of participants classified as each behavioral type. Most notably we have fewer $L1$ and $L2$ types, though roughly the same number of equilibrium types.

There are two potential reasons why we have a different number of subjects classified as behavioral game theory types using the apparent type method than CGC has. The first concerns the games we use and the second the subjects.

We say that a game has type separation of K for player i, if for any types $\tau_i^1, \tau_i^2 \in \{L1, L2, L3, L4, EQ\}$ with $\tau_i^1 \neq \tau_i^2$ we have $|\tau_i^1(x) - \tau_i^2(x)| \geq K$, where $\tau_i^j(x)$ is the action prescribed by strategy τ_i^j for $j = 1, 2$. In our experiments, subjects play 8 random games, that have a type separation of at least 30, games 11 – 18 in Table 1, and 4 of the CGC games that have type separation of at least 10, games 1 – 6 in Table 1, of which they play two from both sides. This results in 14 games with type separation, or 70% of all games. In contrast, of the 8 CGC games only 4 have type separation. Since in CGC subjects play every game from both sides, this results in 50% of games with type separation.

To assess the role of the type of games for the classifications of participants, we make two comparisons. First, we compare the classification in all 20 games to the classification we would have obtained had we only used the 14 games with type separation (see Type-Sep Games in Table 8). For all comparisons we keep a threshold of 40% for the apparent type classification. That is, a subject has to have a guess not further than 0.5 from the same behavioral game theory type guess in at least 40% of games to be classified as that behavioral type. The number of classified subjects drops from 30% to 24% when we go from using all 20 games to only using the 14 games with type separation.

Second, since our subjects play 10 CGC games and 10 new games, two of which have a dominant strategy for one player, we can compare the classification in those two subsets of
games, that have 60% and 80% of games with type separation, respectively. While 39% of subjects are classified in the 10 games we use from CGC, only 33% of subjects are classified in the new games. While almost a 16% drop, this difference is not significant, \(p = 0.335 \). Note, however, that the number of subjects classified in just the CGC games in our data is not significantly different from the classification in the CGC data (92 unclassified subjects out of 150 is not significantly difference from 45 unclassified subjects out of 88, \(p = 0.137 \)). When we compare the number of subjects unclassified in the 10 non-CGC games (101 out of 150) to the CGC data (45 out of 88), the difference is significant, \(p = 0.019 \).

A second possible explanation is that our participants are not as sophisticated as the students used by CGC, or that they are not sufficiently motivated given the incentives at hand. Recall, however, that we have 20 participants in the Memory treatment who in Phase I best respond to the guess of a computer they observe, and 10 participants in the ShowGuess treatment who in Phase II best responded to their Phase I guess after observing their Phase I guess. Of the 400 guesses made by the 20 participants in the Memory treatment, all but 3 are within 0.5 of the best response, and of the 200 guesses made in the ShowGuess treatment, all but 2 are within 0.5 of the best response. This suggests that our participants are willing and able to calculate the best response to a guess, even when we only pay them, as in these two cases at most $1 per guess.

To assess the sophistication of subjects we can also assess the extent to which they make dominated guesses which are not accounted for by any behavioral game theory model. Only about one third of subjects (44) have no dominated guess, though two thirds (97) have two dominated guesses or less. While CGC do not have a similar analysis they have more exclusion criteria than we do. This way they may eliminate players who make many mistakes.

When we condition only on participants that have no dominated guess, we have 52% of participants who are classified. This is a significantly higher fraction than the 21% of those subjects who have at least one dominated guess, \(p < 0.01 \). We can compare the fraction of subjects who are classified among participants with no dominated guess between our data and CGC. The difference is still significant (\(p = 0.069 \)).

8.2 Apparent type classifications using different parameters

In the following two figures we show the relative distribution of types as a function of various cutoffs. For Figure [7] we keep a 0.5 ball around the behavioral type guess. We count the number of games where that subject’s decision matches the behavioral type’s prediction. We

\[^{53} \text{When we condition on participants with one or two dominated guesses, we have 25% of participants who are classified, significantly lower than the 52% who had no dominated guess (} p = 0.006 \). The number is, however, roughly similar to the 17% who are classified among participants with three or more dominated guesses (} p = 0.473 \). \]
For several subsets of games the fraction of participants classified as various types (or left unclassified). We compare data from this paper (Our Data) to data from CGC (CGC Data). “Type-Sep” Games refers to the 14 of our 20 games that have type separation of at least 10.5, “Just CGC Games” refers to the 8 games from CGC used in our experiment, of which 2 were played from both sides, “Non CGC Games” refers to the 8 randomly drawn games with type separation of at least 30 and the 2 games with a dominant strategy. The part of the Table with the heading “Rational” refers to analyses where we only include subjects that made no dominated guess in any game of the experiment.

then identify the (perhaps non-unique) behavioral type with the largest count and call this the subject’s modal type. Since the modal type may not be unique, we count a subject that has \(n \) behavioral strategies \(\{ m_1, \ldots, m_n \} \) for her modal type as \(1/n \) of an \(m_i \) player, for \(m_i \in \{ L1, L2, L3, EQ, D1, D2 \} \) for \(1 \leq i \leq n \). For any \(q \in \{ 1, \ldots, 20 \} \) and any behavioral type \(m_i \), we can compute the number of subjects whose modal type corresponds to \(m_i \) and who match that type in \(q \) or more games. Figure 7 shows for each number of games \(q \), for each behavioral type \(m_i \in \{ L1, L2, L3, EQ, D1, D2 \} \), the number of subjects who in at least \(q \) games play \(m_i \) – up to 0.5 – and who have \(m_i \) as their modal type. When we require subjects to play the same behavioral type in only one game in order to be classified all but 2 of the 150 subjects are classified. While \(L1 \) and \(EQ \) are the most common types, \(L1 \) is more prevalent when we require subjects to play a type only in 6 games or less to be classified. Once the threshold is 7 or more games (up to 13 or less), \(EQ \) is slightly more prevalent. However, overall the figure

Table 8.—Classification comparison with CGC

<table>
<thead>
<tr>
<th></th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>EQ</th>
<th>D1</th>
<th>D2</th>
<th>Uncl.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Games (20)</td>
<td>9.3%</td>
<td>6.7%</td>
<td>1.3%</td>
<td>10%</td>
<td>2.7%</td>
<td>0%</td>
<td>70%</td>
<td>150</td>
</tr>
<tr>
<td>Type-Sep Games (14)</td>
<td>6.7%</td>
<td>4.7%</td>
<td>1.3%</td>
<td>9.3%</td>
<td>2%</td>
<td>0%</td>
<td>76%</td>
<td>150</td>
</tr>
<tr>
<td>Just CGC Games (10)</td>
<td>13%</td>
<td>8%</td>
<td>1.7%</td>
<td>12%</td>
<td>3%</td>
<td>1%</td>
<td>61.3%</td>
<td>150</td>
</tr>
<tr>
<td>Non CGC Games (10)</td>
<td>9.3%</td>
<td>8.3%</td>
<td>1.3%</td>
<td>11.3%</td>
<td>2.3%</td>
<td>0%</td>
<td>67.3%</td>
<td>150</td>
</tr>
<tr>
<td>CGC Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Games (16)</td>
<td>22.7%</td>
<td>13.6%</td>
<td>2.3%</td>
<td>10.2%</td>
<td>0%</td>
<td>0%</td>
<td>51.1%</td>
<td>88</td>
</tr>
<tr>
<td>Our Data: Rational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Games (20)</td>
<td>15.9%</td>
<td>9.1%</td>
<td>2.3%</td>
<td>20.5%</td>
<td>4.5%</td>
<td>0%</td>
<td>47.7%</td>
<td>44</td>
</tr>
<tr>
<td>Type-Sep Games (14)</td>
<td>13.6%</td>
<td>4.5%</td>
<td>2.3%</td>
<td>13.6%</td>
<td>4.5%</td>
<td>0%</td>
<td>61.4%</td>
<td>44</td>
</tr>
<tr>
<td>Just CGC Games (10)</td>
<td>19.3%</td>
<td>11.4%</td>
<td>3.4%</td>
<td>22.7%</td>
<td>5.7%</td>
<td>3.4%</td>
<td>34.1%</td>
<td>44</td>
</tr>
<tr>
<td>Non CGC Games (10)</td>
<td>15.9%</td>
<td>11.4%</td>
<td>2.3%</td>
<td>15.9%</td>
<td>4.5%</td>
<td>0%</td>
<td>50%</td>
<td>44</td>
</tr>
<tr>
<td>CGC Data: Rational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Games (16)</td>
<td>27%</td>
<td>21.6%</td>
<td>5.4%</td>
<td>18.9%</td>
<td>0%</td>
<td>0%</td>
<td>27%</td>
<td>37</td>
</tr>
</tbody>
</table>
shows that the relative distribution of types is quite stable.

Figure 8 shows that similar conclusions hold when we allow subjects to deviate up to 5 instead of 0.5 from each behavioral type guess.

Figure 7.—The number of subjects classified as a specific behavioral type when we require subjects to play at least \(q \) games with a guess at most 0.5 different from that behavioral type guess to be classified.

Figure 8.—The number of subjects classified as a specific behavioral type when we require subjects to play at least \(q \) games with a guess at most 0.5 different from that behavioral type guess to be classified.

8.3 The number of behavioral type guesses dependent on the number of modal type guesses

For each participant we compute the modal type (the behavioral type they use most often), and compute the number of modal type guesses made. We then compute the total number of behavioral type guesses made. This will be, of course, at least as large as the number of modal type guesses. It may be larger if a subject switches between several behavioral types. Figure 9 shows that 91% of subjects have at most only 3 behavioral type guesses that are not their modal type.

8.4 Omitted Types

Figure 10 describes the 9 Behavioral Decision Rules used to classify additional subjects.
Figure 9.—For each number of modal type guesses of a subject, the number of total behavioral type guesses that subject made.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Formula for Player i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BDR1$</td>
<td>$R_i(t_i[l_i + u_i]/2)$</td>
</tr>
<tr>
<td>$DR2$</td>
<td>$R_i([R_i(t_i l_j) + R_j(t_j u_i)]/2)$</td>
</tr>
<tr>
<td>$DR3$</td>
<td>$R_i([t_i(l_j + u_j)/2 + t_i t_j t_i(l_j + u_j)/2]/2)$</td>
</tr>
<tr>
<td>$DR4$</td>
<td>$R_i(t_j[l_i + u_i]/2)$</td>
</tr>
<tr>
<td>$DR5$</td>
<td>$R_i([l_j + u_j]/2/t_i)$</td>
</tr>
<tr>
<td>$DR6$</td>
<td>l_i</td>
</tr>
<tr>
<td>$DR7$</td>
<td>$R_i([t_i u_j + t_j l_i]/2)$</td>
</tr>
<tr>
<td>$DR8$</td>
<td>u_i</td>
</tr>
<tr>
<td>$DR9$</td>
<td>$(l_i + u_i)/2$</td>
</tr>
</tbody>
</table>

Figure 10.—A $DR1$ player guesses as close as possible to the product of her midpoint her target. A $DR2$ player guesses as close as possible to the average of her lowest undominated guess and her opponent’s largest undominated guess. A $DR3$ player guesses as close as possible to the average of her “unbounded” L1 and L3 guesses then. A $DR4$ player guesses as close as possible to the “unbounded” L1 guess of her opponent. A $DR5$ player guesses as close as possible to her opponent’s midpoint, divided by her target. A $DR6$ player guesses her lower bound. A $DR7$ player guesses as close as possible to the midpoint of her a and b, where a is the product of her own target and her opponent’s upper bound and b is the product of her opponent’s target and her own lower bound. A $DR8$ player guesses her upper bound. A $DR9$ player guesses her midpoint.