Radiation Effects - Reactor Materials

Radiation Swelling: stainless steels
- He stabilized voids \Leftrightarrow density decreases or volume increases

Radiation Growth: Zircaloys
• no voids are observed in Zrys;
• no change in volume;
• grain orientation anisotropy or texture leads to length increase of fuel rods since in Zr single crystal (hcp) c-axis decreases and a-axis increases following radiation exposure

c/a ratio decreases or the single crystal becomes short and fat

Corrosion & Oxidation:
Radiation exposure leads to increased rates of corrosion and oxidation

3 basic effects on materials (e.g., Zircaloys):
1. Oxidation/corrosion (see below)
2. Hydriding (figures in JTA – ch. 2)
3. SCC and Corrosion-Fatigue (leads to PCI – JTA – ch. 2)

Mechanisms of Radiation Effects on Corrosion:

a. Radiolytic/Radiation Decomposition of water
b. disruption of thin protective film on surfaces (ZrO$_2$ on Zry cladding)
c. radiation effect on corrosion and SCC

- Formation of
 - Hydrogen
 - Oxygen
 - Hydroxyl (OH) ions
 - Hydrogen Peroxide

- all these products promote and increase rates of corrosion, particularly oxidation

Oxidation: Metal oxide (ZrO$_2$) forms leading to weight gain \rightarrow “breakaway” --- longer the time for breakaway, the better the material: selection of materials made using steam exposure tests

b. Disruption of Protective Layer or cracks in the layer (formed due to ΔT, mechanical, etc.,) --- lead to enhanced corrosion attack \Leftrightarrow Crevice Corrosion

 \Rightarrow nodular vs uniform (see figures in JTA – Ch. 2)

c. Applied or in-service Stress: lead to decreased rupture time (t_r) and endurance limit (in fatigue): σ vs t_r, $\Delta \sigma$ vs N_f
LMFBRs

Liquid metal corrosion

due to thermodynamic imbalance between structural metal and liquid metal
(Na, K, Li, NaK, etc.)

a. due to dissolution and precipitation (because of ΔT, ...) depends on the solubility of liquid in the solid
b. particle migration / diffusion of solid metal into liquid and vice versa
c. penetration of the liquid metal atoms into solid metal (structural) mainly through GBs leading to rupture

- radiation has minor effect on liquid metal embrittlement but in general enhances due to decomposition of liquid metal, or transmutation of atoms/nuclei
- 304, 316 SS are excellent candidates – due to good high temperature creep, etc.; but swelling could be a major limiting factor

Fission Reactors

Zircalloys – commonly used as cladding materials for LWRs as well as HWRs
Prone to

a. oxidation and corrosion
(uniform and nodular)
– function of composition and heat treatment

b. hydriding (sunburst)
– minimize problem thru texture, elimination of moisture in fuel pellets, eliminating hydriding centers, etc.

c. SCC / PCI (I, Cd, etc)
PCI (model – scenario)

Example: Dresden 3 (BWR)

Unirradiated - iodine vapor at 300C

Irradiated - iodine vapor at 300C

Fuel element failed after increase of power in a test reactor

Elimination / Minimization of PCI-failures

1. reduced ramp rates (ΔΦ, ΔT) – not a good solution

2. coated (barrier) fuel
 - surface coated with proper lubricant (?)

3. barrier cladding
 - ID coated with graphit, copper or pure zirconium
 - BWRs: crystal-bar Zr and Zry-2 co-extruded to form a thin Zr liner

Figure 7-11. Micrographs illustrating the four states of iodine-induced cladding failure. (Figure taken from Figure 7-1 of Reference 15 but corrected because photographs 3 and 4 were incorrectly placed there.)