Chapter 1

Preliminaries

The purpose of this chapter is to provide some basic background information.

- Linear Space
- Hilbert Space
- Basic Principles
Linear Space

The notion of linear space provides simple, intuitive, and geometric interpretations on many complex mathematical entities.

• A linear space is an algebraic entity where every of its elements can be expressed algebraically as a linear combination of other elements.
 ◦ The simplest linear space is a vector space.
 ◦ A linear space can also be considered as a “flat” geometric entity in the sense of a “hyperplane” in the ambient space.

• If a linear space is equipped with a notion of sizes, called “norm”, of its elements, then
 ◦ We may measure the “distance” between any two elements.
 ◦ We may introduce the idea of “convergence”.
 ◦ Whether the limit points belong to a linear space is quite a significant issue.

• If a linear space is equipped with a notion of “inner product”, then
 ◦ The inner product can be used to induce a norm.
 ◦ The inner product can be used to determine whether two elements in the linear space are “perpendicular” or not.
 ◦ The notion of “projection” is critically important in applications.
A vector space \(V \) over a field \(\mathbb{F} \) is a set of elements called vectors together with two operations,

\[
\begin{align*}
+ : & \quad V \times V \to V \quad \text{via} \quad (x, y) \mapsto x + y, \\
\cdot : & \quad \mathbb{F} \times V \to V \quad \text{via} \quad (\alpha, x) \mapsto \alpha x,
\end{align*}
\]

that satisfy the following properties:

1. \(x + y = y + x \).
2. \((x + y) + z = x + (y + z) \).
3. There is a null vector \(0 \in V \) such that \(x + 0 = x \) for all \(x \in V \).
4. \(\alpha(x + y) = \alpha x + \alpha y \).
5. \((\alpha + \beta)x = \alpha x + \beta x \).
6. \((\alpha \beta)x = \alpha (\beta x) \).
7. \(0x = 0, \ 1x = x \).

A nonempty subset \(S \) of a vector space \(V \) is called a subspace of \(V \) if every vector of the form \(\alpha x + \beta y \in S \) whenever \(x, y \in S \).
• Some examples:
 ◦ The set
 \[\mathcal{P}_n := \{a_n x^n + \ldots + a_1 x + a_0 | a_n \in \mathbb{R}\} \]
 of all polynomials over \(\mathbb{R} \) with degree less than or equal to \(n \) is a vector space.
 ◦ The set
 \[\mathcal{C}^1(a, b) := \{ f : (a, b) \to \mathbb{R} | f' \text{ is continuous over } (a, b) \} \]
 of continuously differentiable functions is a vector space.
 ◦ The set
 \[\mathcal{T}_n := \{ T \in \mathbb{R}^{n \times n} | t_{ij} = r_{|i-j|+1}, \text{ where } r_1, \ldots, r_n \in \mathbb{R} \text{ arbitrary} \} \]
 of \(n \)-dimensional Toeplitz matrices is a vector space.
 ◦ The set
 \[\mathcal{L}_p[a, b] := \{ f : [a, b] \to \mathbb{C} | \int_a^b |f(x)|^p dx < \infty \} \]
 of \(\mathcal{L}_p \) integrable functions is a vector space.
 ◦ The set
 \[c_0 := \{ \{\xi_k\}_{k=1}^{\infty} | \lim_{k \to \infty} \xi_k = 0 \} \]
 is a vector space.
More Definitions

- A set V is called a *linear variety* of a subspace M if
 \[V = x_0 + M = \{x_0 + m | m \in M\}. \]

- A set C is said to be a *cone with vertex at the origin* if
 \[\alpha x \in C, \text{ whenever } x \in C \text{ and } \alpha > 0. \]
 - The set of all nonnegative matrices is a cone.
 - The set of all nonnegative continuous functions is a convex cone.

- A vector x is said to be *linearly independent* of a set S if x cannot be written as a linear combination of vectors from S.
 - The vectors x_1, \ldots, x_n are mutually linearly independent if and only if
 \[\sum_{i=1}^{n} \alpha_i x_i = 0 \implies \alpha_i = 0, \quad i = 1, \ldots, n. \]
 - If x_1, \ldots, x_n are linearly independent, and $\sum_{i=1}^{n} \alpha_i x_i = \sum_{i=1}^{n} \beta_i x_i$, then $\alpha_i = \beta_i$ for all $i = 1, \ldots, n$.

- A finite set \{x_1, \ldots, x_n\} of linearly independent vectors is said to be a *basis* of the space V if and only if
 \[V = \text{span}\{x_1, \ldots, x_n\} := \{\sum_{i=1}^{n} \alpha_i x_i | \alpha_i \in \mathbb{F}\}. \]
Convexity

- A set K is said to be convex if
 $$\alpha x + (1 - \alpha)y \in K, \text{ whenever } x, y \in K \text{ and } 0 \leq \alpha \leq 1.$$
 - The sum of two convex sets is convex.
 - The intersection of convex sets is convex.

- Given a set S, the convex hull of S, denoted by $co(S)$, is defined to be the smallest convex set containing S.
 - Prove that $co(S)$ is the collection of all convex combinations from S, i.e.,
 $$co(S) = \{ \sum_{i=1}^{n} \alpha_i x_i | x_i \in S, \alpha_i \geq 0, \sum_{i=1}^{n} \alpha_i = 1, \text{ and } n \text{ is arbitrary but finite} \}.$$
 - What is the convex hull of all n-dimensional orthogonal matrices?
 - What is the convex hull of all n-dimensional doubly stochastic matrices? (Birkhoff’s theorem)

- A real-valued function $\phi : V \to \mathbb{R}$ is said to be a convex function if
 $$\phi(\lambda x + (1 - \lambda)y) \leq \lambda \phi(x) + (1 - \lambda)y$$
 for each $x, y \in V$ and $0 \leq \lambda \leq 1$.
Normed Vector Space

- A vector space V is said to be a *normed space* if there is a map
 \[\| \cdot \| : V \to \mathbb{R} \]
 such that
 1. $\| x \| > 0$ if $x \neq 0$.
 2. $\| x + y \| \leq \| x \| + \| y \|$ for all x and y in V.
 3. $\| \alpha x \| = |\alpha| \| x \|$ for all $x \in V$ and $\alpha \in \mathbb{F}$.

- Some examples:
 - Over \mathbb{R}^n, the function
 \[\| x \|_p := \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \]
 is a norm, if $p \geq 1$.
 - Identify the unit balls of \mathbb{R}^n under different vector norms.
 - Note that unit balls are necessarily convex.
 - How does the notion of unit balls affects approximations?
Over $\mathbb{R}^{n \times n}$, the function
\[\|M\|_p := \sup_{x \neq 0} \frac{\|Mx\|_p}{\|x\|_p} \]
is called an induced (matrix) norm.

- What is the geometric meaning of an induced matrix norm?
- What is the analog of the SVD if other norms are used in the variation formulation? Any usage?
- Why is the usual Frobenius norm of a matrix not an induced norm?

Over $C^1[a, b]$, the function
\[\|f\| := \max_{a \leq x \leq b} |f(x)| + \max_{a \leq x \leq b} |f'(x)| \]
is a norm. (Note that the maximum exists over the closed interval $[a, b]$.)

- Define the total variation of a function f over $[a, b]$ by
\[T^b_a(f) := \sup_{a = x_0 < \ldots < x_n = b} \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| \]

- If $T^b_a(f) < \infty$, we say that f is of bounded variation.
- The set
\[BV[a, b] := \{ f : [a, b] \to \mathbb{R} | T^b_a(f) < \infty \} \]
is a normed vector space with the norm defined by
\[\|f\| := f(a) + T^b_a(f). \]

- Give an example of a continuous function which is not of bounded variation.
A sequence of vector \(\{x_n\} \) in a normed vector space \(V \) is said to converge to a vector \(x \), denoted by \(x_n \to x \) if

\[
\|x_n - x\| \to 0 \quad \text{as } n \to \infty.
\]

- If a sequence converges, then its limit is unique.

- A sequence \(\{x_n\} \) in a normed vector space \(V \) is said to be a Cauchy sequence if to every \(\varepsilon > 0 \), there exists an integer \(N \) such that \(\|x_n - x_m\| < \varepsilon \) whenever \(m, n > N \).

- Every convergent sequence is a Cauchy sequence.
- A Cauchy sequence may not be convergent. (*Give an example!*)

- A space \(V \) in which every Cauchy sequence converges to a limit in \(V \) is said to be complete.
 - A complete normed vector space is called a Banach space.
Some examples:

- The space $C[a, b]$ with the norm

$$
\|f\| := \int_a^b |f(x)| \, dx
$$

is incomplete.

- The sequence

$$
f_n(x) := \begin{cases}
0, & \text{for } 0 \leq x \leq \frac{1}{2} - \frac{1}{n}, \\
0x - \frac{n}{2} + 1, & \text{for } \frac{1}{2} - \frac{1}{n} \leq x \leq \frac{1}{2}, \\
1 & \text{for } x \geq \frac{1}{2}.
\end{cases}
$$

is Cauchy since $\|f_n - f_m\| = \frac{1}{2n} - \frac{1}{2m}$, but its limit point is not continuous.

- The same space $C[a, b]$ with the norm

$$
\|f\| := \max_{a \leq x \leq b} |f(x)|,
$$

the space $L^p[a, b]$ with $p \geq 1$, and any finite-dimensional normed vector space are complete.

- Any normed vector space V is isometrically isomorphic to a dense subset of a Banach space \tilde{V}.

 - X and Y are isomorphic if there exist a one-to-one mapping T of X onto Y such that

$$
T(a_1 x_1 + a_2 x_2) = a_1 T(x_1) + a_2 T(x_2).
$$

- An isomorphism T is isometric if

$$
\|T(x)\| = \|x\|.
$$
A mapping A from a vector V into a vector space W is said to be a **linear operator** if

$$A(\alpha x + \beta y) = \alpha A(x) + \beta A(y)$$

for all $x, y \in V$ and $\alpha, \beta \in \mathbb{F}$.

A linear operator A is said to be **bounded** if

$$\|A\| := \sup_{x \in V; x \neq 0} \frac{\|Ax\|}{\|x\|} < \infty.$$

The above calculation can be simplified to $\|A\| = \sup_{\|x\|=1} \|Ax\|$.

A bounded linear operator is uniformly continuous.

If a linear operator is continuous at one point, it is bounded.

An example: Show that the differential operator

$$D(f) = f'$$

is linear and unbounded from $C^1(a, b)$ to $C(a, b)$ under some norms.

Given a normed vector space X and a Banach space Y, the space

$$B(X, Y) := \{ A : X \rightarrow Y | A \text{ is linear and bounded} \}$$

is itself a Banach space with $\|A\|$ as the norm.
• The dual space V^* of a normed vector space V is defined to be

$$V^* := \{ f : V \to \mathbb{F} | f \text{ is linear and continuous} \}.$$

- The dual space V^* of any normed vector space is automatically a Banach space.
 - Characterize the unit ball in V^*.

• (Hahn-Banach Theorem) This theorem plays a fundamental role in optimization theory.
 - Suppose that f is a real-valued linear functional on a subspace S and that $f(s) \leq p(s)$ for all $s \in S$.
 - Then there exists a linear functional $F : V \to \mathbb{R}$ such that $F(x) \leq p(x)$ for all $x \in V$ and $F(s) = f(s)$ for all $s \in S$.
 - What is the geometric meaning of the Hahn-Banach theorem in \mathbb{R}^n?
 - Pay attention to the minimum norm extension?
Hilbert Space

Hilbert spaces, equipped with their inner products, possess a wealth of geometric properties that generalize all of our understanding about the classical Euclidean space \mathbb{R}^n.

- A concept of orthogonality analogous to the “dot product” in \mathbb{R}^3 can be developed based on the “belief” of inner product. We use the algebraic expression of inner product to probe the inner structure of an abstract space.

- Orthogonality naturally leads to the notion of projection, which then leads to the idea of minimum distance. Though the minimum norm in a general normed vector space has a similar idea, the shortest distance by projection has a particularly appealing geometric intuition.
Inner Product

- Given a vector space X over a field \mathbb{F} (either \mathbb{C} or \mathbb{R}), we say that it is equipped with an *inner product*

 $$\langle \cdot, \cdot \rangle : X \times X \rightarrow \mathbb{F}$$

if the inner product satisfies the following axioms:

1. $\langle x, y \rangle = \overline{\langle y, x \rangle}$.
2. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.
3. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$.
4. $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0$ if and only if $x = 0$.

- The quantity

 $$\|x\| := \langle x, x \rangle$$

 naturally defines a vector norm on X.

- Two vectors x and y are said to be *orthogonal*, denoted by $x \perp y$, if $\langle x, y \rangle = 0$.
Some basic facts:

- (Cauchy-Schwarz Inequality) For all \(x, y\) in an inner product space,

\[
\langle x, y \rangle \leq \|x\| \|y\|.
\]

Equality holds if and only if \(x = \alpha y\) or \(y = 0\).

- (Parallelogram Law) With the induced inner product norm,

\[
\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2.
\]

- (Continuity) Suppose that \(x_n \to x\) and \(y_n \to y\). Then \(\langle x_n, y_n \rangle \to \langle x, y \rangle\).

- Note that these geometric properties follow from the algebraic definition of inner product.

A complete inner product space is called a Hilbert space.
Orthogonal Complements

- Given any subset S in an inner product space X, the set
 \[S^\perp := \{ y \in X | y \perp x \text{ for every } x \in S \} \]
 is called the **orthogonal complement** of S.
 - S^\perp is a closed subspace.
 - $S \subseteq (S^\perp)^\perp$.
 - $(S^\perp)^\perp$ is the smallest closed subspace containing S.

- We say that X is the **direct sum** of two subspaces M and N, denoted by $M = M \bigoplus N$, if every $x \in X$ has a unique representation of the form $x = m + n$ where $m \in M$ and $n \in N$.
 - The Classical Projection Theorem: Let M be a closed subspace of a Hilbert space H. Corresponding to every $x \in H$,
 - There exists a unique $m_0 \in M$ such that $\| x - m_0 \| \leq \| x - m \|$ for all $m \in M$.
 - A necessary and sufficient condition that m_0 be the unique best approximation of x in M is that $x - m_0 \perp M$.
 - If M is a closed linear subspace of a Hilbert space X, then $X = M \bigoplus M^\perp$.

- Given a vector $x_0 \in X$ and a closed subspace M, the unique vector $m_0 \in M$ such that $x_0 - m_0 \in M^\perp$ is called the **orthogonal projection** of x_0 onto M.
Gram-Schmidt Orthogonalization Process

- Any given sequence (finite or infinite) \(\{x_n\} \) of linearly independent vectors in an inner product space \(X \) can be orthogonalized in the following sense.
 - There exists an orthonormal sequence \(\{z_n\} \) in \(X \) such that for each finite positive integer \(\ell \),
 \[
 \text{span}\{x_1, \ldots, x_\ell\} = \text{span}\{z_1, \ldots, z_\ell\}.
 \]
 - Indeed, the sequence \(\{z_n\} \) can be generated via the Gram-Schmidt process.
 \[
 z_1 := \frac{x_1}{\|x_1\|},
 \]
 \[
 w_n := x_n - \sum_{i=1}^{n-1} (x_i, z_i) z_i, \quad n > 1,
 \]
 \[
 z_n := \frac{w_n}{\|w_n\|}, \quad n > 1.
 \]
 - Show that in finite dimensional space, the Gram-Schmidt process is equivalent to that any full column rank matrix \(A \in \mathbb{R}^{n \times m} \) can be decomposed as
 \[
 A = QR
 \]
 where \(Q \in \mathbb{R}^{n \times m} \), \(Q^T Q = I_m \), and \(R \in \mathbb{R}^{m \times m} \), \(R \) is upper triangular.
• An example: Applying the Gram-Schmidt procedure with respect to a given inner product in the space $C^1[a, b]$ on the sequence of polynomials $\{1, x^1, x^2, \ldots\}$.

 ◦ Six popular orthogonal polynomial families:
 ▶ Gegenbuer: $[-1, 1]$, $\omega(x) = (1 - x^2)^{a - \frac{1}{2}}$, a any irrational number of rational $\geq -\frac{1}{2}$.
 ▶ Hermite: $(-\infty, \infty)$, $\omega(x) = e^{-x^2}$.
 ▶ Laguerre: $[0, \infty)$, $\omega(x) = e^{-x}x^a$, a any irrational or rational ≥ -1.
 ▶ Legendre: Needed in Gaussian quadrature.
 ▶ Jacobi: $[-1, 1]$, $\omega(x) = (1 - x)^a(1 + x)^b$, a any irrational or rational ≥ -1.
 ▶ Chebyshev: $(-1, 1)$, $\omega(x) = (1 - x^2)^{\pm \frac{1}{2}}$.

 ◦ Show that the resulting orthonormal polynomials $\{z_n\}$ satisfy a recursive relationship of the form

\[
z_n(x) = (a_n x + b_n)z_{n-1}(x) - c_n z_{n-2}(x), \quad n = 2, 3, \ldots
\]

where the coefficients a_n, b_n, c_n can be explicitly determined.

 ◦ Show that the zeros of the orthonormal polynomials are real, simple, and located in the interior of $[a, b]$.
One of the most fundamental optimization question is as follows:

- Let \(x_0 \) represent a target vector in a Hilbert space \(X \).
 - The target vector could mean a true solution that is hard to get in the abstract space \(X \).
- Let \(M \) denote a subspace of \(X \).
 - Consider \(M \) as the set of all computable, constructible, or reachable (by some reasonable means) vectors in \(X \).
 - \(M \) shall be called a feasible set.
- Want to solve the optimization problem

\[
\min_{m \in M} \|x_0 - m\|.
\]
Preliminaries

Projection Theorem

- A necessary and sufficient condition that \(m_0 \in M \) solves the above optimization problem is that
 \[x_0 - m_0 \perp M. \]
 - The minimizer \(m_0 \) is unique, if it exists.
 - The existence is guaranteed only if \(M \) is closed.

- How to find this minimizer?
 - Assume that \(M \) is of finite dimension and has a basis
 \[M = \text{span}\{ y_1, \ldots, y_n \}. \]
 Write
 \[m_0 = \sum_{i=1}^{n} \alpha_i y_i. \]
 Then \(\alpha_1, \ldots, \alpha_n \) satisfy the normal equation
 \[\langle x_0 - \sum_{i=1}^{n} \alpha_i y_i, y_j \rangle = 0, \quad j = 1, \ldots, n. \]
In matrix form, the linear system can be written as
\[
\begin{pmatrix}
\langle y_1, y_1 \rangle & \langle y_2, y_1 \rangle & \cdots & \langle y_n, y_1 \rangle \\
\langle y_1, y_2 \rangle & \langle y_2, y_2 \rangle & \cdots & \langle y_n, y_2 \rangle \\
\vdots & \vdots & \ddots & \vdots \\
\langle y_1, y_n \rangle & \langle y_2, y_n \rangle & \cdots & \langle y_n, y_n \rangle \\
\end{pmatrix}
\begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_n \\
\end{pmatrix}
=
\begin{pmatrix}
\langle x_0, y_1 \rangle \\
\langle x_0, y_2 \rangle \\
\vdots \\
\langle x_0, y_n \rangle \\
\end{pmatrix}.
\]

If the basis \(\{y_1, \ldots, y_n\}\) are orthonormal, then trivially
\[
\alpha_i = \langle x_0, y_i \rangle.
\]

What can be done if \(M\) is not of finite dimension?

If \(M\) is of codimension \(n\), i.e., if the orthogonal complement of \(M\) has dimension \(n\), then a dual approximation problem can be formulated.
Fourier Series

- Let \(\{z_n\} \) be an orthonormal sequence in a Hilbert space \(X \).
 - The convergence of an infinite series in \(X \) can be identified as a square-summable sequence in \(\mathbb{R} \) in the following way:
 \[
 \sum_{i=1}^{\infty} \xi_i z_i \longrightarrow x \quad \text{if and only if} \quad \sum_{i=1}^{\infty} |\xi_i|^2 < \infty.
 \]
 - \(\xi_i = \langle x, z_i \rangle \).

- (Bessel’s Inequality) Given \(x \in X \), then
 \[
 \sum_{i=1}^{\infty} |\langle x, z_i \rangle|^2 \leq \|x\|^2.
 \]

- The convergent series
 \[
 \mathcal{F}(x) := \sum_{i=1}^{\infty} \langle x, z_i \rangle z_i
 \]
 guaranteed by Bessel’s inequality is called the *Fourier series* of \(x \) in \(X \).
 - \(\mathcal{F}(x) \) belongs to the closure of \(\text{span}\{z_n\} \).
 - \(x - \mathcal{F}(x) \perp \text{span}\{z_n\} \) (and hence its closure).
 - When will an orthonormal sequence \(\{z_n\} \) generate a Hilbert space?
• An orthonormal sequence \(\{z_n\} \) in a Hilbert space \(X \) is said to be complete if the closure of \(\text{span}\{z_n\} \) is \(X \) itself.

○ An orthonormal sequence \(\{z_n\} \) in a Hilbert space is complete if and only if the only vector orthogonal to each \(z_n \) is the zero vector.

○ The subspace of polynomials is dense in \(\mathcal{L}_2[-1, 1] \).

○ The Legendre polynomials, i.e., the orthonormal sequence

\[
z_n(x) = \sqrt{\frac{2n + 1}{2}} \frac{(-1)^n}{2^n n!} \frac{d^n}{dx^n} (1 - x^2)^n
\]

is a complete in \(\mathcal{L}_2[-1, 1] \).
Minimum Norm Problems

The minimization problem described in the proceeding section can appear in different forms, including

- The dual approximation problem.
- The minimum energy control problem.
- The shortest distance to a convex set.
Dual Problem of Best Approximation

- Given \(\{y_1, \ldots, y_n\} \) in a Hilbert space, define the feasible set
 \[
 F := \{ x \in H | \langle x, y_i \rangle = c_i \}.
 \]
 Want to solve the minimum norm problem
 \[
 \min_{x \in F} \|x\|.
 \]
- Define
 \[
 M := \text{span}\{y_1, \ldots, y_n\}.
 \]
 Then
 \[
 F = c + M^\perp,
 \]
 for some suitable \(c \in F \).
 - Analogous to the notion that a general solution is the sum of a particular solution \(c \) and a general homogeneous solution \(M^\perp \).
 - We say that \(F \) is a linear variety with codimension \(n \).
 - Note that \(F \) (or \(M^\perp \)) itself could be of infinite dimension.
• Using the Projection Theorem, we know that the solution exists and is unique. Indeed, the optimal solution \(x^* \)

\[
x^* \in M^\perp = M.
\]

\diamond \; x^* = \sum_{i=1}^{n} \beta_i y_i.

\diamond \; The coefficients \(\beta_i \) are determined from the linear system

\[
\begin{pmatrix}
\langle y_1, y_1 \rangle & \langle y_2, y_1 \rangle & \cdots & \langle y_n, y_1 \rangle \\
\langle y_1, y_2 \rangle & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots \\
\langle y_1, y_n \rangle & \langle y_n, y_1 \rangle & \cdots & \langle y_n, y_n \rangle \\
\end{pmatrix}
\begin{pmatrix}
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_n \\
\end{pmatrix}
= \begin{pmatrix}
c_1 \\
c_2 \\
\vdots \\
c_n \\
\end{pmatrix}.
\]

\diamond \; What is the geometric meaning of the dual problem?
A Control Problem

- Consider the problem of minimizing

\[J(x, u) := \int_0^T (x^2(t) + u^2(t))dt \]

subject to

\[\dot{x}(t) = u(t), \quad x(0) = \text{given}. \]

- The objective function represents a compromise between a desire to have \(x(t) \) small while simultaneously conserving control energy.

- Equip the product space \(H = L^2[0, T] \times L^2[0, T] \) with the inner product

\[\langle (x_1, u_1), (x_2, u_2) \rangle = \int_0^T [x_1(t)x_2(t) + u_1(t)u_2(t)]dt. \]

- Let \(V \) be the linear variety

\[V := \{ (x, u) \in H | x(t) = x(0) + \int_0^t u(\tau)d\tau \}. \]

- The control problem is equivalent to finding the element in \(V \) with minimal norm.

 - It can be shown that \(V \) is closed in \(H \).
 - The Projection Theorem is hence applicable. The solution exists and is unique.
 - How to do the computation?
Minimum Distance to a Convex Set

- The concept of linear varieties can be generalized to convex sets.
- Given a vector \mathbf{x} and a closed convex subset K in a Hilbert space H,
 - There is a unique $k_0 \in K$ such that
 \[\| \mathbf{x} - k_0 \| \leq \| \mathbf{x} - k \| \]
 for all $k \in K$.
 - A necessary and sufficient condition for k_0 being the global minimizer is that
 \[\langle \mathbf{x} - k_0, k - k_0 \rangle \leq 0 \]
 for all $k \in K$.
Linear Complementary Problem

- Given \(\{y_1, \ldots, y_n\} \subset H \), and \(x \in H \), want to minimize

\[
\|x - \sum_{i=1}^{n} \alpha_i y_i \|
\]

subject to \(\alpha_i \geq 0 \) for all \(i \).
- The feasible set forms a cone.
 - There exists a unique solution \(\hat{x} = \sum_i^n \alpha_i y_i \).
- Try to characterize the coefficients \(\alpha_i \).
 - Take \(k = \hat{x} + y_j \), then
 \[
 \langle x - \hat{x}, y_j \rangle \leq 0.
 \]
 - Take \(k = \hat{x} - \alpha_j y_j \), then
 \[
 \langle x - \hat{x}, -\alpha_j y_j \rangle \leq 0.
 \]
 - Together,
 \[
 \langle x - \hat{x}, y_i \rangle \leq 0, \text{ with equality if } \alpha_i > 0.
 \]
• Rewrite in matrix form,

\[
\begin{pmatrix}
\langle y_1, y_1 \rangle & \langle y_2, y_1 \rangle & \cdots & \langle y_n, y_1 \rangle \\
\langle y_1, y_2 \rangle & \ddots & \vdots & \langle y_1, y_n \rangle \\
\vdots & \ddots & \ddots & \vdots \\
\langle y_1, y_n \rangle & \cdots & \langle y_n, y_n \rangle & \langle y_1, y_1 \rangle
\end{pmatrix}
\begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_n
\end{pmatrix}
-
\begin{pmatrix}
\langle x, y_1 \rangle \\
\langle x, y_2 \rangle \\
\vdots \\
\langle x, y_n \rangle
\end{pmatrix}
=
\begin{pmatrix}
z_1 \\
z_2 \\
\vdots \\
z_n
\end{pmatrix}.
\]

\diamond \ z_i \geq 0 \text{ for all } i.

\diamond \ \alpha_i z_i = 0 \text{ for all } i.

• Check out CPnet for more discussions on complementary problems.
Quadratic Programming Problem

- Given a symmetric positive-definite matrix $Q \in \mathbb{R}^{n \times n}$, $A \in \mathbb{R}^{m \times n}$, $m < n$, and $b \in \mathbb{R}^m$, want to minimize

 $$x^T Q x,$$

 subject to $Ax = b$.

- The feasible set is a linear variety,

 $$Ax = b \iff x \in x_0 + \mathcal{N}(A).$$

 $\bigcirc \mathcal{N} = \mathcal{R}(A^T)^\perp.$

- This is a minimum norm problem.

 $\bigcirc \langle x, y \rangle = x^T Q y$ defines an (oblique) inner product.

- Write down a numerical algorithm for the solution.
Basic Principles in Optimization

According to David Luenberger, the theory of optimization can be summarized from a few “simple, intuitive, geometric relations.” These are

- The Projection Theorem.
 - The simplest form of this theorem is that the shortest line from a point to a plane is necessarily perpendicular to the plane.

- The Hahn-Banach Theorem.
 - The simplest form of this theorem is that a sphere and a point not in the sphere can be “separated” by a hyperplane.

- Duality
 - The simplest way to describe the duality is that the shortest distance from a point to a convex set is equal to the maximum of the distance from the point to a hyperplane separating the point from the convex set.

- Differentials.
 - In \mathbb{R}^n, a functional is optimized only at places where the gradient vanishes.

Each of these notions can easily be understood in \mathbb{R}^3 and can be extended into infinite-dimensional space.