Eigenvalue Problems

- Eigenvalue problems are particularly interesting in scientific computing because
 - Eigenvalue analysis is an important practice in many fields of engineering or physics.
 - Eigenvalue analysis play an important role in the performance of many numerical algorithms.
 - There are powerful algorithms for finding eigenvalues, yet these algorithms are far from obvious.

- What is a general eigenvalue problem?
 - Given $n \times n$ matrices A and B, find numbers λ such that the equation
 \[Ax = \lambda Bx \tag{0.1} \]
 is satisfied for some nontrivial vector $x \neq 0$.
 - If B is invertible, then (0.1) can be reduced to
 \[Cx = \lambda x. \tag{0.2} \]
 - The nonzero vector x is called an eigenvector and the corresponding scalar λ is called an eigenvalue of the pair (A, B) (or the matrix C).
 - Generally, λ and x are complex-valued.

- Finding the solution of eigensystems is a fairly complicated procedure.
 - It is at least as difficult as finding the roots of polynomials.
 - Any numerical method for solving eigenvalue problems is expected to be iterative in nature. No direct method is available.
 - Algorithms for solving eigenvalue problems include the power method, subspace iteration, the QR algorithm, the Jacobi method, the Arnoldi method and the Lanczos algorithm.
• Spectral decomposition:
 ◦ If a matrix A of size $n \times n$ has (a complete set of) n eigenvectors x_1, \ldots, x_n with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$, then we may write
 \[AX = X\Lambda, \]
 where $X = [x_1, \ldots, x_n]$ and $\Lambda = \text{diag}\{\lambda_1, \ldots, \lambda_n\}$. If X is invertible, the matrix A then has a spectral decomposition
 \[A = XAX^{-1}. \]
 (0.3)
 ◦ Note that not all matrices will have a spectral decomposition. If A does have a spectral decomposition, we say A is diagonalizable.

• Generically, almost all matrices are diagonalizable. But there are defective matrices. For example, the matrix J where
 \[J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} \]
 has eigenvalues $\lambda = 2$ with multiplicity 3, but has only one eigenvector corresponding to it. J is not diagonalizable.

• If X is nonsingular, then A and XAX^{-1} gave the same eigenvalues. A transformation by the relationship XAX^{-1} is called a similarity transformation.
 ◦ To find eigenvalues of a matrix A, it suffices to transform A by similarity transformations to an upper triangular matrix.
 ◦ Schur decomposition: Every square matrix A can be transformed by unitary similarity transformation into an upper triangular matrix, i.e., there exist an unitary matrix $Q \in C^{n \times n}$ such that
 \[A = QTQ^*, \]
 (0.4)
 where T is upper triangular. This is the principal basis of numerical algorithms for eigenvalue computation.