Implementation of Newton Interpolant

- Let d_{ij} denote the (i, j)-entry in the following table where the indexing begins with $d_{00} = f[x_0]$.

$$
\begin{align*}
 f[x_0] &= f_0 \\
 f[x_1] &= f_1 \\
 f[x_2] &= f_2 \\
 f[x_3] &= f_3 \\
 \vdots & \quad \vdots & \quad \vdots & \quad \vdots
\end{align*}
$$

- The array can be built up columnwise.

$$
 d_{ij} = d_{i,j-1} - d_{i-1,j-1} / (x_i - x_{i-j+1}).
$$

- The diagonal elements are the coefficients of the Newton interpolant.

- It is not necessary to store the entire 2-dimensional table. Suppose the values of f_1, \ldots, f_n have been stored in the array c_1, \ldots, c_n (For convenience of indexing, only n support data are marked in this example.) Then

  ```matlab
  for j=2:1:n
    for i=n:-1:j
      c[i]=(c[i]-c[i-1])/(x[i]-x[i-j+1]);
    end
  end
  ```

 - Entries of the resulting array c are the desirable coefficients.
 - The columns are generated from the bottom up to avoid premature overwriting of values of c.
 - The operation counts is n^2 additions and $\frac{1}{2}n^2$ divisions.