Polynomial Evaluation

- Given a polynomial in the natural form

 \[p(t) = a_n t^n + a_{n-1} t^{n-1} + \ldots + a_1 t + a_0, \]

 the evaluation of \(\hat{p} = p(\hat{t}) \) can be done stably by an algorithm called synthetic division:

 \[
 p = a[n] \\
 \text{for } i = n-1:-1:0 \\
 \quad p = p*t + a_{-}[i] \\
 \text{end} \\
 \]

 - Synthetic division requires only \(n \) additions and \(n \) multiplications.
 - It is quite efficient.
 - Synthetic division is only quite stable in the sense that the computed value of \(p(t) \) is the exact value of a polynomial \(\tilde{p} \) whose coefficients differ from those of \(p \) by relative errors on the order of the rounding unit. (Students! Read this statement one more time. This is normally what is meant by stability shown by backward error analysis.)
 - Note that the Lagrange polynomials are not in the natural form and hence is difficult to evaluate.

- We say a polynomial \(p(t) \) is the Newton form if

 \[p(t) = c_0 + c_1(t-x_0) + c_2(t-x_0)(t-x_1) + \ldots + c_n(t-x_0)(t-x_1) \ldots (t-x_{n-1}). \]

 - Evaluation of a Newton form is easy:

 \[
 p = c[n] \\
 \text{for } i = n-1:-1:0 \\
 \quad p = p*(t-x[i]) + c[i] \\
 \text{end} \\
 \]

 - It remains to determine the coefficients \(c_0, \ldots, c_n \) so that \(p(t) \) interpolates the data \(\{(x_i, f_i)\} \) for \(i = 0, 1, \ldots, n. \)
Determining the Newton Form

- The coefficients of the Newton form of an interpolant can be determined through the system

\[
\begin{align*}
 f_0 &= c_0 \\
 f_1 &= c_0 + c_1(x_1 - x_0) \\
 &\vdots \\
 f_n &= c_0 + c_1(x_n - x_0) + \ldots + c_n(x_n - x_0) \ldots (x_n - x_{n-1}).
\end{align*}
\]

\[\begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
1(x_1 - x_0) & 0 & \ldots & 0 \\
1(x_2 - x_0)(x_2 - x_0)(x_2 - x_1) & \ldots & 0 \\
& \vdots & \ddots & \vdots \\
1(x_n - x_0)(x_n - x_0)(x_n - x_1) & \ldots & (x_n - x_0) \ldots (x_n - x_{n-1})
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
\vdots \\
c_n
\end{bmatrix}
=
\begin{bmatrix}
f_0 \\
f_1 \\
f_2 \\
\vdots \\
f_n
\end{bmatrix}.\]

- If new points are added to be interpolated, the coefficients already determined will \textit{not} be affected. We just need to add a new row to determine \(c_{n+1}\).

- There is a yet better way, called the Newton divided differences, to determine the coefficients.