Stability

• An algorithm may be unstable. A problem may be ill-conditioned.

• Why is stability an important issue in the design of an algorithm?
 ◦ Since a computer can only represent finitely many numbers, there
 is a good chance that most real numbers will have to be rounded
 and, hence, carry errors.
 ◦ Also, the law of arithmetic operations generally is not
 satisfied. For example, there exists a positive number ϵ
 such that, in the floating-point arithmetic, $1 + \epsilon = 1$.
 ◦ These errors can be magnified or propagated through the sequence
 of executions required by an algorithm and eventually corrupt the
 desirable results.

• Two mathematically equivalent algorithms may give rise to two totally
 different numerical answers as the result of unstability.
 ◦ Consider a machine with $\beta = 10$, $t = 5$, and unlimited digits for
 the exponents. Observe the two way of evaluating $e^{-5.5}$:

 $e^{-5.5} = 1.000 - 5.5000 + 15.125 - 27.730 + 38.129 - 41.942$
 $+ 38.446 - 30.208 + \ldots = 0.00263363$;
 $e^{-5.5} = \frac{1}{e^{5.5}} = \frac{1}{1 + 5.5 + 15.125 + 27.730 + \ldots} = 0.0040865$,

 whereas the true value should be $e^{-5.5} \approx 0.00408677$.

 ◦ The wrongness in the first calculation originates from, for
 example, terms like 38.129 already have roundoff error which
 is nearly as large as the final result. (38.12760417)
 ◦ The second way is no better. The denominator is just as bad
 the first way of calculation. However, the savage somehow is
 remedied by the division.
A numerical method is said to be unstable if the roundoff errors introduced at one stage of the computation propagate with increasing magnitude in later stages.

An example of efficient but unstable algorithm:

- Suppose a machine with $\beta = 10$ and $\tau = 6$ is used to evaluate
 $$E_n = \int_0^1 x^n e^{x-1} \, dx, \quad n = 1, 2, \ldots$$

- It appears the recursive formula
 $$E_n = 1 - nE_{n-1}$$

 obtained by integration by parts is an easy enough algorithm, if we know $E_1 = \frac{1}{e}$.

- The results are
 $$E_1 \approx 0.367879, \quad E_6 \approx 0.127120,$$
 $$E_2 \approx 0.264242, \quad E_7 \approx 0.110160,$$
 $$E_3 \approx 0.207274, \quad E_8 \approx 0.118720,$$
 $$E_4 \approx 0.170904, \quad E_9 \approx -0.0684800,$$
 $$E_5 \approx 0.145480,$$

 and E_9 obviously is wrong. (Why?)

- Note that the error in E_1 is magnified by a factor of $9! = 362880$. Suppose the initial error is $\approx .441 \times 10^{-6}$. Then the error in E_9 should be $\approx .1601$ which is even greater than the true value of $E_9 \approx 0.0916$.

- Generally speaking, any newly designed algorithm needs to pass the stability analysis first. Not always we can develop a stable algorithm, but unstable algorithms should clearly caution users about the possible breakdown.