Round-Off Errors

- How big is the round-off errors in a given floating-point number system?
 - Consider the mantissa only. The rounding results in an absolute error bounded by half of the last digit, i.e.,
 \[|\epsilon| \leq \frac{1}{2} \beta^{-t}. \]
 - For any number \(x \) that is within the range of the floating-point number system, if we write \(x_r = x(1 + \delta) \), then \(|\delta| \leq \frac{1}{2} \beta^{1-t} \).

- The proof of the above bound on the relative error is interesting.
 - There exists a unique \(e \) such that \(\beta^{e-1} \leq x < \beta^e \).
 - In \([\beta^{e-1}, \beta^e)\), numbers are uniformly spaced by \(\beta^{e-t} \). (Why?)
 - It follows that \(|x_r - x| \leq \frac{1}{2} \beta^{e-t} \).
 - Hence \(\frac{|x_r - x|}{|x|} \leq \frac{1}{2} \frac{\beta^{e-t}}{\beta^{e-1}} = \frac{1}{2} \beta^{1-t} \).

- On an IBM machine (\(\beta = 16 \)), for example, single precision (\(t = 6 \)) gives \(|\delta| \leq 2^{-21} \approx 0.477 \times 10^{-6} \) whereas double precision (\(t = 14 \)) gives \(|\delta| \leq 2^{-53} \approx 0.111 \times 10^{-15} \).