1. Using the Newton formulation, write a general-purpose program in the form

\[y_{\text{lookup}} = \text{table}(x, y, x_{\text{lookup}}) \]

that works like a “table-lookup” device. That is, \text{table} creates internally a polynomial that interpolates points \(\{(x_i, y_i)\} \) given in the data base of vectors \(x \) and \(y \). It then looks up the corresponding values \(y_{\text{lookup}} \) at any specified locations \(x_{\text{lookup}} \). (Note that \(x_{\text{lookup}} \) could contain an array of many \(x \) values so that a comman such as \(\text{plot}(x_{\text{lookup}}, y_{\text{lookup}}) \) is sufficient to plot the polynomial.\)

2. The danger of polynomial interpolation without care was first observed by C. Runge in 1901. He attempted to approximate the function

\[f(x) = \frac{1}{1 + 25x^2} \]

over the interval \([-1, 1]\) by polynomials that interpolate \(f(x) \) at \textit{equally spaced points}. Repeat his experiment by MATLAB to see what kind of danger he was referring to.

(a) Use your program \text{table} to plot a few interpolation polynomials of degrees, say, 6, 12, and 20, respectively for the Runge’s function. (Note that this is global interpolation.)

(b) Report the absolute error \(|f(x) - p(x)|\) in semilogy plots.

(c) MATLAB has a command \text{interp1} that does the local polynomial interpolation. (Note that the degree of the polynomial is usually low and fixed.) Compare results from using \text{interp1} and your \text{table}. MATLAB has another command \text{polyfit} that does polynomial fitting based on the idea of least squares. However, when the degree of the polynomial and the number of data to be fitted are exactly the same, the least square fitting becomes interpolation. The problem is that \text{polyfit} construct the polynomial by using our first approach, i.e., solving a linear system, which we do not recommend. You may use this \text{polyfit} to check your answers in this project, but I still want you to write your own program \text{table} by using the Newton formulation.