Low Rank Circulant Approximation

by

Moody T. Chu

joined with

Robert J. Plemmons

September 12, 2000
Outline

• Background
 ◊ Representing a Circulant Matrix
 ◊ Basic Properties
 ◊ Spectral Properties
 ◊ (Inverse) Eigenvalue Problem
 ◊ Conjugate Even Property

• Low Rank Approximation
 ◊ TSVD
 ◊ Data Matching Problem
 ◊ Tree Representation
 ◊ New Truncation Criteria

• Numerical Experiment
 ◊ Reorganizing Tree Topology
 ◊ Counter-intuitive TSVD

• Conclusion
Structured Low Rank Approximation

• Given
 ◦ A target matrix $A \in \mathbb{R}^{n \times n}$,
 ◦ An integer k, $1 \leq k < \text{rank}(A)$,
 ◦ A class of matrices Ω with linear structure,
 ◦ a fixed matrix norm $\| \cdot \|$;

Find

 ◦ A matrix $\hat{B} \in \Omega$ of rank k, and
 ◦ $\|A - \hat{B}\| = \min_{B \in \Omega, \text{rank}(B) = k} \|A - B\|$.

• Example of linear structure:
 ◦ Toeplitz or block Toeplitz matrices.
 ◦ Hankel or banded matrices.
 ◦ Circulant matrices.

• Applications:
 ◦ Signal and image processing with Toeplitz structure.
 ◦ Model reduction problem in speech encoding and filter design with Hankel structure.
 ◦ Regularization of ill-posed inverse problems.
Representing a Circulant Matrix

- Basic form:

\[C = \begin{bmatrix} c_0 & c_1 & \cdots & c_{n-1} \\ c_{n-1} & c_0 & c_1 & \cdots & c_{n-2} \\ c_{n-2} & c_{n-1} & c_0 & \cdots & c_{n-3} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ c_1 & c_2 & \cdots & c_{n-1} & c_0 \end{bmatrix} \]

- Uniquely determined by the first row \(c \).
- Denoted by \(\text{Circul}(c) \).
- Mainly interested in \(c \in \mathbb{R}^n \).

- Polynomial form:

- Define

\[\Pi := \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 1 \\ 1 & 0 & \cdots & 0 \end{bmatrix}. \quad (1) \]

- If \(c := [c_0, \ldots, c_{n-1}] \), then

\[\text{Circul}(c) = \sum_{k=0}^{n-1} c_k \Pi^k. \quad (2) \]
Basic Properties

• Rewrite

\[\text{Circul}(c) = P_c(\Pi) \] \hspace{1cm} (3)

◇ Characteristic polynomial

\[P_c(x) = \sum_{k=0}^{n-1} c_k x^k. \] \hspace{1cm} (4)

• Algebraic properties:

◇ Closed under multiplication.
◇ Commute under multiplication.

• Spectral properties:

◇ Closely related to the Fourier analysis.
◇ Explicit solution for the eigenvalue and the inverse eigenvalue problems.
◇ FFT calculation.
More Spectral Properties

- Define
 \(\Omega := \text{diag}(1, \omega, \omega^2, \ldots, \omega^{n-1}). \)
 \(\diamond \omega := \exp\left(\frac{2\pi i}{n}\right). \)

- Define the Fourier matrix \(F \) where
 \[
 F^* := \frac{1}{\sqrt{n}} \begin{bmatrix}
 1 & 1 & 1 & \cdots & 1 \\
 1 & \omega & \omega^2 & \cdots & \omega^{n-1} \\
 1 & \omega^2 & \omega^4 & \cdots & \omega^{2n-2} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & \omega^{n-1} & \omega^{n-2} & \cdots & \omega
 \end{bmatrix}. \]
 \(\diamond \) \(F \) is unitary.

- The forward shift matrix \(\Pi \) is unitarily diagonalizable.
 \[
 \Pi = F^* \Omega F. \]

- The circulant matrix \(\text{Circul}(c) \) with any given row vector \(c \) has a spectral decomposition
 \[
 \text{Circul}(c) = F^* P_c(\Omega) F. \]
(Inverse) Eigenvalue Problem

- **Forward problem:**
 - Eigenvalues of $\text{Circul}(c)$:
 \[\lambda = [P_c(1), \ldots, P_c(\omega^{n-1})]. \]
 \[\text{(9)} \]
 - Can be computed from
 \[\lambda^T = \sqrt{n}F^*c^T. \]
 \[\text{(10)} \]
- **Inverse problem:**
 - Given any vector $\lambda := [\lambda_0, \ldots, \lambda_{n-1}] \in \mathbb{C}^n$, define
 \[c^T = \frac{1}{\sqrt{n}}F\lambda^T. \]
 \[\text{(11)} \]
 - $\text{Circul}(c)$ has eigenvalue λ.
- Both matrix-vector multiplication involved can be done via the fast Fourier transform (FFT).
 - Overhead is $O(n \log_2 n)$ flops.
- If all the eigenvalues are distinct, then there are precisely $n!$ many distinct circulant matrices with the prescribed spectrum.
Real Circulant Matrix

• \(c^T = \frac{1}{\sqrt{n}} F \lambda^T \) is real if and only if \(\lambda^T = \sqrt{n} F^* c^T \) is conjugate even.

 ◊ If \(n = 2m \), \(\lambda = [\lambda_0, \lambda_1, \ldots, \lambda_{m-1}, \lambda_m, \overline{\lambda_{m-1}}, \ldots, \overline{\lambda_1}] \).
 ◃ \(\lambda_0, \lambda_m \in R \). (Absolutely real.)
 ◊ If \(n = 2m + 1 \), \(\lambda := [\lambda_0, \lambda_1, \ldots, \lambda_m, \overline{\lambda_m}, \ldots, \overline{\lambda_1}] \).
 ◃ \(\lambda_0 \in R \). (Absolutely real.)

• Singular value decomposition of \(\text{Circul}(c) \):

\[
\text{Circul}(c) = (F^* P_c(\Omega)|P_c(\Omega)|^{-1})|P_c(\Omega)|F \\
\]

(12)

◊ Singular values are \(|P_c(\omega^k)| \).
◊ At most \(\lceil \frac{n+1}{2} \rceil \) distinct singular values.
Low Rank Approximation

- Given $A \in \mathbb{R}^{n \times n}$, its nearest circulant matrix approximation $\text{Circul}(c)$ is given by the projection

$$c_k := \frac{1}{n} \langle A, \Pi^k \rangle, \quad k = 0, \ldots, n - 1,$$

(13)

- $\text{Circul}(c)$ is generally of full rank even if A has lower rank to begin with.

- How to reduce the rank?

 - The truncated singular value decomposition (TSVD) gives rise to the nearest low rank approximation in Frobenius norm.

 - The TSVD of $\text{Circul}(\hat{c})$ is automatically circulant.
A Numerical Algorithm?

- Given A and rank $\ell \leq n$,
 1. Use the projection to find the nearest circulant matrix approximation $\text{Circul}(c)$ of A.
 2. Use the inverse FFT to calculate the spectrum λ of the matrix $\text{Circul}(c)$.
 3. Arrange all elements of $|\lambda|$ in descending order, including those with equal modulus.
 4. Let $\hat{\lambda}$ be the vector consisting of elements of λ, but those corresponding to the last $n - \ell$ singular values in the descending order are set to zero.
 5. Apply the FFT to $\hat{\lambda}$ to compute a nearest circulant matrix $\text{Circul}(\hat{c})$ of rank ℓ to A.

- The resulting matrix $\text{Circul}(\hat{\lambda})$ is complex-valued in general.
 - Need to preserve the conjugate even structure.
 - Need to modify the TSVD strategy.
Data Matching Problem

- All circulant matrices of the same size have the same set of unitary eigenvectors.
- The low rank real circulant approximation problem is equivalent to
 \[(\text{DMP}) \text{ Given a conjugate-even vector } \lambda \in \mathbb{C}^m, \text{ find its nearest conjugate-even approximation } \hat{\lambda} \in \mathbb{C}^m \text{ subject to the constraint that } \hat{\lambda} \text{ has exactly } n - \ell \text{ zeros.}\]
- How to solve DMP?
 - Write \(\hat{\lambda} = [\hat{\lambda}_1, 0] \in \mathbb{C}^m \) with \(\hat{\lambda}_1 \in \mathbb{C}^{\ell} \) being arbitrary.
 - Consider the problem of minimizing
 \[F(P, \hat{\lambda}) = \|P\hat{\lambda}^T - \lambda^T\|^2\]
 with a permutation matrix \(P \).
 \(P \) is used to search the match.
 - Write \(P = [P_1, P_2] \) with \(P_1 \in \mathbb{R}^{n \times \ell} \).
 - A least squares problem:
 \[F(P, \hat{\lambda}) = \|P_1\hat{\lambda}_1^T - \lambda^T\|^2\]
The optimal solution is
\[\hat{\lambda}_1 = \lambda P. \]

The entries of \(\hat{\lambda}_1 \) must be a portion of \(\lambda \).

The objective function becomes
\[F(P, \hat{\lambda}) = \| (P_1 P_1^T - I) \lambda \|^2. \]

\(P_1 P_1^T - I \) is but a projection.

The optimal permutation \(P \) should be such that \(P_1 P_1^T \) projects \(\lambda \) to its first \(\ell \) components with largest modulus.

- Without the conjugate-even constraints, the answer to the data matching problem corresponds precisely to the usual TSVD selection criterion.
- With the conjugate-even constraint, the above criterion remains effective subject to the conjugate-even structure inside \(\lambda \).
An Example

- Consider the case $n = 6$.
- Assume $\lambda_1, \lambda_2 \notin \mathbb{R}$.
- Six possible conjugate-even structures.
- Tree graph:
 - Each node in the tree represents an element of λ.
 - Arrange the nodes from top to bottom in descending order of their moduli.
 - In case of a tie,
 - Complex conjugate nodes stay at the same level.
 - Real node is below the complex nodes.
- If $\lambda_1, \overline{\lambda_1}, \lambda_0, \lambda_2, \overline{\lambda_2}, \lambda_3$, then

![Tree graph](image)

Figure 1: Tree graph of $\lambda_1, \overline{\lambda_1}, \lambda_0, \lambda_2, \overline{\lambda_2}, \lambda_3$ with $|\lambda_1| \geq |\lambda_0| > |\lambda_2| \geq |\lambda_3|$.
Figure 2: Tree graphs of $\hat{\lambda}$ with rank 5, 3, and 2.

Figure 3: Tree graphs of $\hat{\lambda}$ with rank 4.

Figure 4: Tree graph of $\hat{\lambda}$ with rank 1.
Table

<table>
<thead>
<tr>
<th>rank</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>other possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>![Diagram for rank 5]</td>
<td>![Diagram for rank 4]</td>
<td>![Diagram for rank 3]</td>
<td>![Diagram for rank 2]</td>
<td>![Diagram for rank 1]</td>
<td>![Other possibilities]</td>
</tr>
</tbody>
</table>

Figure 5: Possible solutions to the DMP when \(n = 6 \).
One More Catch

- There could be real-valued elements other than the two (when n is even) absolutely real elements in a conjugate-even λ.
 - The eigenvalues of a symmetric circulant matrix are conjugate-even and all real.
 - Non-absolutely-real, conjugate-even, real-valued elements must appear in pair.
 - The truncation criteria are further complicated.
 - The topology of the trees could be changed.
- Consider the case $n = 6$ and $\lambda_2 = \overline{\lambda_2}$. we illustrate our point below.
Figure 6: Tree graph of $\lambda_1, \bar{\lambda}_1, \lambda_0, \lambda_2, \lambda_2, \lambda_3$ with $|\lambda_1| \geq |\lambda_0| > |\lambda_2| \geq |\lambda_3|$.

Figure 7: Tree graph of $\hat{\lambda}$ with rank 4 when $\lambda_2 = \bar{\lambda}_2$.
A Numerical Algorithm!

- For the case $n = 2m$, we have assumed
 - 2 absolutely real elements $|\lambda_0| \geq |\lambda_m|$.
 - $2m - 2$ elements are “potentially” complex-valued, that they are paired up (necessarily), and are arranged in descending order, i.e., $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_{m-1}|$.
- No ordering relationship between the absolutely real elements and the potentially complex elements is assumed.
 - Such an ordering relationship determines the truncation criteria.
 - Assuming that there are exactly $m + 1$ distinct absolute values of elements in λ, then there are exactly $\binom{m + 1}{2}$ many possible conjugate-even structures for the case $n = 2m$.
- Any algorithm needs to be smart enough to explore the conjugate even structure, to truncate, and to reassemble the conjugate even structure.
Example 1

Consider the 8×8 symmetric $Circul(c)$:

$$c = [0.5404, 0.2794, 0.1801, -0.0253, -0.2178, -0.0253, 0.1801, 0.2794].$$

- Eigenvalues (in descending order):

$$[1.1909, 1.1892, 1.1892, 0.3273, 0.3273, 0.1746, -0.0376, -0.0376]$$

- For rank 7 approximation, the usual TSVD would set -0.0376 to zero, resulting in a complex matrix.

- Use the conjugate-even eigenvalues

$$\hat{\lambda} = [1.1909, 1.1892, 0.3273, -0.0376, 0 -0.0376, 0.3273, 1.1892],$$

 to obtain the best real-valued, rank 7, approximation $Circul(\hat{c})$ via the FFT:

$$\hat{c} = [0.5186, 0.3657, 0.0670, -0.0680, -0.0572, -0.0680, 0.0670, 0.3657].$$

- To obtain the best real-value, rank 4, circulant approximation, use eigenvalues $\hat{\lambda}$

$$\hat{\lambda} = [1.1909, 1.1892, 0, 0, 0.3273, 0, 0, 1.1892].$$

\diamond The last pair of eigenvalues in λ are set to zero while the value 0.1746 together with one 0.3273 cause a topology change in the graph tree.
Example 2

Consider the 9×9 $\text{Circul}(c)$ with

$$c = [1.6864, 1.7775, 1.9324, 2.9399, 1.9871, 1.7367, 4.0563, 1.2848, 2.5989].$$

- Eigenvalues: structure given by

$$
\begin{bmatrix}
20.0000, \\
-2.8130 + 1.9106i, -2.8130 - 1.9106i, 3.0239 - 1.0554i, 3.0239 + 1.0554i, \\
-1.3997 + 0.7715i, -1.3997 - 0.7715i, -1.2223 - 0.2185i, -1.2223 + 0.2185i
\end{bmatrix}.
$$

- To obtain a real-valued, rank 8, circulant approximation of rank 8, we have no choice but to select the set the largest eigenvalue (singular value) of $\text{Circul}(c)$ to zero to produce

$$\hat{c} = [-0.5358, -0.5872, -1.1736, -0.3212, 1.0198, 1.4013, -0.0761, -0.4115, 0.6844].$$

as its first row.

- Setting the largest singular value to zero to obtain the nearest low rank approximation is quite counterintuitive to the usual sense of TSVD.
Conclusion

- For any given real data matrix, its nearest real circulant approximation can simply be determined from the average of its diagonal entries.

- The nearest low rank approximation to a circulant matrix can be determined effectively from the TSVD and the FFT.

- To construct real circulant matrix with specified spectrum, the eigenvalues must appear in conjugate even form.

- The truncation criteria for a nearest low rank, real, circulant matrix approximation must be modified.

- We have proposed a fast algorithm to accomplish all of these objectives.

- Extensions to the block case with possible applications to image reconstruction (not discussed in this talk) are possible.