Chapter 7

Spectrally Constrained Approximation

- Overview
- Reformulation
- Least Squares Approximation
- Toeplitz Inverse Eigenvalue Problem
- Eigenvalue Computation
- Simultaneous Reduction
- Nearest Normal Matrix Approximation
Overview

- Least squares approximations for various types of real and symmetric matrices subject to spectral constraints share a common structure.
- The projected gradient can be formulated explicitly.
- A descent flow can be followed numerically.
- The procedure can be extended to approximating general matrices subject to singular value constraints.

- Notation:

 $\mathcal{S}(n) := \{\text{All real symmetric matrices}\}$

 $\mathcal{O}(n) := \{\text{All real orthogonal matrices}\}$

 $\|X\| := \text{Frobenius matrix norm of } X$

 $\Lambda := \text{A given matrix in } \mathcal{S}(n)$

 $M(\Lambda) := \{Q^T \Lambda Q | Q \in \mathcal{O}(n)\}$

 $\mathcal{V} := \text{A single matrix or a subspace in } \mathcal{S}(n)$

 $P(X) := \text{The projection of } X \text{ into } \mathcal{V}$

 $\Sigma := \text{A given general matrix in } \mathbb{R}^{m \times n}$

 $W(\Sigma) := \{Q_1 \Sigma Q_2 | Q_1 \in \mathcal{O}(m), Q_2 \in \mathcal{O}(n)\}$

 $\mathcal{U} := \text{A single matrix or a subspace in } \mathbb{R}^{m \times n}$
Spectrally Constrained Problem

Minimize $F(X) := \frac{1}{2} \|X - P(X)\|^2$

Subject to $X \in M(\Lambda)$

- Special cases:
 - Problem A: Given a symmetric matrix, find its least squares approximation with prescribed spectrum.
 - Problem B: Construct a symmetric Toeplitz matrix that has a prescribed set of eigenvalues.
 - Problem C: Find the spectrum of a given a symmetric matrix.
Singular-Value Constrained Problem

Minimize \(F(X) := \frac{1}{2} \|X - P(X)\|^2 \)

Subject to \(X \in W(\Sigma) \)

- Special cases:
 - Problem D: Given a general real \(m \times n \) matrix, find its least square approximation that has a prescribed set of singular values.
 - Problem E: Construct a general real \(m \times n \) matrix, find its singular values.
Reformulation

- Idea:
 1. $X \in M(\Lambda)$ satisfies the spectral constraint.
 2. $P(X) \in V$ has the desirable structure in V.
 3. Minimize the undesirable part $\|X - P(X)\|$.

- Working with the parameter Q is easier:

 \[
 \text{Minimize } F(Q) := \frac{1}{2} \langle Q^T \Lambda Q - P(Q^T \Lambda Q),
 Q^T \Lambda Q - P(Q^T \Lambda Q) \rangle
 \]

 Subject to $Q^T Q = I$

 ◦ $\langle A, B \rangle = \text{trace}(AB^T)$ is the Frobenius inner product.
Feasible Set $O(n)$ & Gradient of F

- The set $O(n)$ is a regular surface.
- The tangent space of $O(n)$ at any orthogonal matrix Q is given by
 \[T_QO(n) = QK(n) \]
 where
 \[K(n) = \{ \text{All skew-symmetric matrices} \} . \]
- The normal space of $O(n)$ at any orthogonal matrix Q is given by
 \[N_QO(n) = QS(n). \]
- The Fréchet Derivative of F at a general matrix A acting on B:
 \[F'(A)B = 2\langle \Lambda A(A^T \Lambda A - P(A^T \Lambda A)), B \rangle. \]
- The gradient of F at a general matrix A:
 \[\nabla F(A) = 2\Lambda A(A^T \Lambda A - P(A^T \Lambda A)). \]
The Projected Gradient

• A splitting of $R^{n \times n}$:

$$R^{n \times n} = T_Q O(n) + N_Q O(n) = Q K(n) + Q S(n).$$

• A unique orthogonal splitting of $X \in R^{n \times n}$:

$$X = Q \left\{ \frac{1}{2}(Q^T X - X^T Q) \right\} + Q \left\{ \frac{1}{2}(Q^T X + X^T Q) \right\}.$$

• The projection of $\nabla F(Q)$ into the tangent space:

$$g(Q) = Q \left\{ \frac{1}{2}(Q^T \nabla F(Q) - \nabla F(Q)^T Q) \right\} = Q[P(Q^T \Lambda Q), Q^T \Lambda Q].$$
An Isospectral Descent Flow

- A descent flow on the manifold $O(n)$:
 \[\frac{dQ}{dt} = Q[Q^T \Lambda Q, P(Q^T \Lambda Q)]. \]

- A descent flow on the manifold $M(\Lambda)$:
 \[\frac{dX}{dt} = \frac{dQ^T}{dt} \Lambda Q + Q^T \Lambda \frac{dQ}{dt} = [X, [X, P(X)]]_{k(X)}. \]

- The entire concept can be obtained by utilizing the Riemannian geometry on the Lie group $O(n)$.
The Second Order Derivative

- Extend the projected gradient g to the function
 \[G(Z) := Z[P(Z^T \Lambda Z), Z^T \Lambda Z] \]
 for general matrix Z.

- The Fréchet derivative of G:
 \[
 G'(Z)H = H[P(Z^T \Lambda Z), Z^T \Lambda Z] \\
 + Z[P(Z^T \Lambda Z), Z^T \Lambda H + H^T \Lambda Z] \\
 + Z[P'(Z^T \Lambda Z)(Z^T \Lambda H + H^T \Lambda Z), Z^T \Lambda Z].
 \]

- The projected Hessian at a critical point $X = Q^T \Lambda Q$ for the tangent vector QK with $K \in K(n)$:
 \[
 \langle G'(Q)QK, QK \rangle = \\
 \langle [P(X), K] - P'(X)[X, K], [X, K] \rangle.
 \]
Let the given matrix be \hat{A} and $\Lambda := \text{diag}\{\lambda_1, \ldots, \lambda_n\}$. The projection is $P(X) = \hat{A}$.

The projected gradient is given by:

$$g(Q) = Q[\hat{A}, Q^T \Lambda Q].$$

The descent flow is given by the IVP:

$$\frac{dX}{dt} = [[\hat{A}, X], X]$$
$$X(0) = \Lambda.$$
Sorting Property

- Assume the given eigenvalues are $\lambda_1 > \ldots > \lambda_n$.
- Assume the eigenvalues of \hat{A} are $\mu_1 > \ldots > \mu_n$.
- Assume Q is a critical point on $O(n)$ and define
 \[X := Q^T \Lambda Q \]
 \[E := Q \hat{A} Q^T. \]
- The first order condition $[\hat{A}, X] = 0$ implies E must be a diagonal matrix. Hence, the diagonals of E must be a permutation of μ_1, \ldots, μ_n.
- The second order derivative is reduced to
 \[
 \langle G'(Q)QK, QK \rangle = \langle [\hat{A}, K], [X, K] \rangle \\
 = \langle E\hat{K} - \hat{K}E, \Lambda \hat{K} - \hat{K}\Lambda \rangle \\
 = 2 \sum_{i<j} (\lambda_i - \lambda_j)(e_i - e_j)\hat{k}_{ij}^2.
 \]
Wielandt-Hoffman Theorem

- We have shown that if a matrix Q is optimal, then the columns q_1,\ldots,q_n of Q^T must be the normalized eigenvectors of \hat{A} corresponding respectively to μ_1,\ldots,μ_n. The solution to Problem A is unique and is given by

 $$X = \lambda_1 q_1 q_1^T + \ldots + \lambda_n q_n q_n^T.$$

- Let A and $A + E$ be symmetric matrices with eigenvalues $\mu_1 > \ldots \mu_n$ and $\lambda_1 > \ldots > \lambda_n$, respectively. Then

 $$\sum_{i=1}^{n} (\lambda_i - \mu_i)^2 \leq ||E||^2.$$
Let \mathcal{T} be the subspace of all symmetric Toeplitz matrices and $\Lambda := \text{diag}\{\lambda_1, \ldots, \lambda_n\}$.

The subspace \mathcal{T} has a natural orthogonal basis, say E_1, \ldots, E_n. So the projection of any matrix X is given by

$$P(X) = \sum_{i=1}^{n} \langle X, E_i \rangle E_i.$$

The projected gradient is given by:

$$g(Q) = Q[P(Q^T \Lambda Q), Q^T \Lambda Q].$$

The descent flow is given by the IVP:

$$\begin{align*}
\frac{dX}{dt} &= [[P(X), X], X] \\
X(0) &= \text{any thing on } M(\Lambda) \text{ but diagonal matrices.}
\end{align*}$$

Open Question: With an arbitrary structured affined subspace \mathcal{V} (See the IEP with Prescribed Entries), characterize the critical points of the descent flow.
To stay on the surface $\mathcal{M}(\Lambda)$, a differential equation must take the form

$$\frac{dX}{dt} = [X, k(X)]$$

where $k : \mathcal{S}(n) \rightarrow \mathcal{S}(n)^\perp$.

- Require k to be a linear Toeplitz annihilator:
 - $k(X) = 0$ if and only if $X \in \mathcal{T}$.
- What is the idea?
 - Suppose all elements in Λ are distinct.
 - $[X, k(X)] = 0$ if and only if $k(X)$ is a polynomial of X.
 - $k(X) \in \mathcal{S}(n) \cap \mathcal{S}(n)^\perp = \{0\}$.
 - $\|X(t)\| = \|\Lambda\|$ for all $t \in \mathbb{R}$.
 - A bounded flow on a compact set must have a non-empty ω-limit set.
• Can such a k be defined?

 ◦ The simplest choice:

 $$k_{ij} := \begin{cases}
 x_{i+1,j} - x_{i,j-1}, & \text{if } 1 \leq i < j \leq n \\
 0, & \text{if } 1 \leq i = j \leq n \\
 x_{i,j-1} - x_{i+1,j}, & \text{if } 1 \leq j < i \leq n
 \end{cases}$$

• **Open Question:** Starting with the unique centro-symmetric Jacobi matrix as the initial value, must the annihilator flow converge? [119]
Eigenvalue Computation

- Let V be the subspace of all diagonal matrices and $\Lambda = X_0$ be the matrix whose eigenvalues are to be found.

- The objective of Problem C is the same as that of the Jacobi method, i.e., to minimize the off-diagonal elements.

- The descent flow is given by the IVP:

$$\frac{dX}{dt} = [[\text{diag}(X), X], X]$$
$$X(0) = X_0.$$

- The necessary condition for X to be critical is

$$[\text{diag}(X), X] = 0.$$
Simultaneous Reduction

- Simultaneous reduction of real matrices by either orthogonal similarity or orthogonal equivalence transformation is hard [64].
 - Little is known in both theory and practice on how reduction for more than two matrices.
 - The project gradient method based on the Jacobi idea can be formulated.

- Simultaneous reduction flow:
 \[
 \frac{dX_i}{dt} = \left[X_i, \sum_{j=1}^{p} \frac{[X_j, P_j^T(X_j)] - [X_j, P_j^T(X_j)]^T}{2}\right]
 \]
 \[X_i(0) = A_i\]

- Nearest normal matrix problem [64]
 \[
 \frac{dW}{dt} = \left[W, \frac{1}{2}[W, \text{diag}(W^*)] - [W, \text{diag}(W^*)]^*\right]
 \]
 \[W(0) = A.\]