Chapter 7

Stochastic Inverse Eigenvalue Problem

- Overview
- Relation to nonnegative matrices
- Basic formulation
- ASVD flow
- Convergence
- Numerical Experiment
Overview

- Inverse Eigenvalue Problem (IEP):
 - Reconstruction of matrices from prescribed spectral data.
 - Spectral data may involve complete or partial information of eigenvalues or eigenvectors.
 - Often necessary to restrict the construction to special classes of matrices.

- Fundamental questions:
 - Solvability: Determine a necessary or a sufficient condition under which an IEP has a solution.
 - Computability: Develop a scheme through which, knowing a priori that the given spectral data are feasible, a matrix can be constructed numerically.
An Example: Parametrized IEP

- **Given**
 - Symmetric matrices $A_0, A_1, \ldots, A_n \in \mathbb{R}^{n \times n}$,
 - Real numbers $\lambda_1^* \geq \ldots \geq \lambda_n^*$.

- **Find**
 - Values of $c := (c_1, \ldots, c_n)^T \in \mathbb{R}^n$
 - Eigenvalues of the matrix
 $$A(c) := A_0 + c_1 A_1 + \ldots + c_n A_n$$
 are precisely $\lambda_1^*, \ldots, \lambda_n^*$.

- Not always does the PIEP have a solution.

- Iterative and continuous methods exist (Friedland et al. ’87, Chu et al., ’90).
Inverse Stochastic Spectrum Problem

- Construct a stochastic matrix with prescribed spectrum.
 - Stochastic structure.
 - No strings of symmetry.
 - Eigenvalues can appear in complex conjugate pairs.
- A hard problem (Karpelevič ’51, Minc ’88).
 - The set Θ_n of points in the complex plane that are eigenvalues of stochastic $n \times n$ matrices is completely characterized.
 - The Karpelevič theorem characterizes only one complex value a time and does not provide further insights into when two or more points in Θ_n are eigenvalues of the same stochastic matrix.
Karpelevič’s Theorem

- A number λ is an eigenvalue for a stochastic matrix if and only if it belongs to a region Θ_n such as the one shown below for $n = 4$.

![Figure 1: Θ_4 by the Karpelevič Theorem.](image-url)
Region is symmetric about the real axis.
The points on the unit circles are given by \(e^{2\pi a/b} \)
where \(a \) and \(b \) range over all integers such that \(0 \leq a < b \leq n \).
The boundary of \(\Theta_n \) consists of curvilinear arcs connecting these points in circular order. These arcs are characterized by specific parametric equations (Minc, ’88).
Relation to Nonnegative Matrices

- A complex nonzero number α is an eigenvalue of a nonnegative matrix with a positive maximal eigenvalue r if and only if α/r is an eigenvalue of a stochastic matrix.

- If A is a nonnegative matrix with positive maximal eigenvalue r and a positive maximal eigenvector x, then $D^{-1}r^{-1}AD$ is a stochastic matrix where $D := \text{diag}\{x_1, \ldots, x_n\}$.

 - The IEP for nonnegative matrices (NIEP) has received considerable interest in the literature (Berman et al., 94).
 - Some necessary and a few sufficient conditions for the NIEP are available.

- A continuous method for the NIEP of symmetric matrices has been studied (Chu, '91).
Basic Formulation

- Notation:
 \[M(\Lambda) := \{ P \Lambda P^{-1} | P \in R^{n \times n} \text{ is nonsingular} \} \]
 \[\pi(R^n_+) := \{ B \odot B | B \in R^{n \times n} \} \]

 \(\Lambda = \) real-valued matrix carrying the spectrum information.

 \(\odot = \) Hadamard product.

- Idea:

 - Find the intersection of \(M(\Lambda) \) and \(\pi(R^n+) \).

 - The intersection, if exists, results in a nonnegative matrix isospectral to \(\Lambda \).

 - Reduce the nonnegative matrix, if its maximal eigenvector is positive, to a stochastic matrix by diagonal similarity transformation.
Reformulation

Minimize \(F(P, R) := \frac{1}{2}\|PJP^{-1} - R \circ R\|^2 \)

Subject to \(P \in \text{Gl}(n), \ R \in \text{gl}(n) \)

• \(P \) and \(R \) are used as coordinates to maneuver elements in \(\mathcal{M}(\Lambda) \) and \(\pi(R_+^n) \) to reduce the objective value.

• Feasible domains are open sets.

• A minimum may not exist.
Gradient of F

- Inner product in the product topology:
 $$\langle (X_1, Y_1), (X_2, Y_2) \rangle := \langle X_1, X_2 \rangle + \langle Y_1, Y_2 \rangle.$$

- With respect to the product topology:
 $$\nabla F(P, R) =$$
 $$((\Delta(P, R)M(P)^T - M(P)^T \Delta(P, R))P^{-T},$$
 $$-2\Delta(P, R) \circ R).$$

◇ Abbreviation:
 $$M(P) := PJP^{-1}$$
 $$\Delta(P, R) := M(P) - R \circ R.$$
Steepest Descent Flow

- Steepest descent flow:
 \[
 \frac{dP}{dt} = [M(P)^T, \Delta(P, R)] P^{-T}
 \]
 \[
 \frac{dR}{dt} = 2\Delta(P, R) \circ R.
 \]

- Advantages:
 - No longer need the projection of $\nabla F(P, R)$ as does in the symmetric case.
 - The zero structure in the original matrix $R(0)$ is preserved throughout the integration — may be used to explore the possibility of constructing a Markov chain with prescribed linkages and spectrum.

- Disadvantage:
 - The solution flow $P(t)$ is susceptible to becoming unbounded — a possible frailty.
 - The involvement of P^{-1} is somewhat worrisome.
ASVD flow

- An analytic singular value decomposition of the path of matrices $P(t)$ is an analytic path of factorizations

$$P(t) = X(t)S(t)Y(t)^T$$

where $X(t)$ and $Y(t)$ are orthogonal and $S(t)$ is diagonal.

- An ASVD exists if $P(t)$ is analytic (Bunse-Gerstner et al., ’91).

- The $P(t)$ defined by the differential system is analytic follows from the Cauchy-Kovalevskaya theorem since the coefficients of the vector field are analytic.
New Coordinate System

- The two matrices \(P \) and \(R \) are used, respectively, as *coordinates* to describe the isospectral matrices and nonnegative matrices.

 ◇ May have used more dimensions of variables than necessary — does no harm.

 ◇ When flows \(P(t) \) and \(R(t) \) are introduced, in a sense a flow in \(\mathcal{M}(\Lambda) \) and a flow in \(\pi(R^+_n) \) are also introduced.

- The motion of the coordinate \(P \) is further described by three other variables \(X, S, \) and \(Y \) according to the ASVD.

- To produce the steepest descent flow, a coordinate system \((X(t), S(t), Y(t), R(t))\) is eventually imposed on matrices in \(\mathcal{M}(\Lambda) \times \pi(R^+_n) \).
Calculating the ASVD

- Differentiate $P(t) = X(t)S(t)Y(t)^T$: (Wright '92):
 \[
 \dot{P} = \dot{X} SY^T + X \dot{SY}^T + XS\dot{Y}^T
 \]
 \[
 X^T \dot{P}Y = X^T \dot{X} S + \dot{S} + S \dot{Y}^T Y
 \]

 $\diamond Z, W$ are skew-symmetric matrices.

- Define $Q := X^T \dot{P}Y$.
 $\diamond Q$ is known since \dot{P} is already specified.
 \diamond The inverse of $P(t)$ is calculated from
 \[
 P^{-1} = Y S^{-1} X^T.
 \]

 \diamond The diagonal entries of $S = \text{diag}\{s_1, \ldots, s_n\}$ provide us with information about the proximity of $P(t)$ to singularity.
• Flow for $S(t)$:

$$\frac{dS}{dt} = \text{diag}(Q).$$

• Obtain $W(t)$ and $Z(t)$:

$$q_{jk} = z_{jk} s_k + s_j w_{jk},$$

$$-q_{kj} = z_{jk} s_j + s_k w_{jk}.$$

◇ If $s_k^2 \neq s_j^2$, then

$$z_{jk} = \frac{s_k q_{jk} + s_j q_{kj}}{s_k^2 - s_j^2},$$

$$w_{jk} = \frac{s_j q_{jk} + s_k q_{kj}}{s_j^2 - s_k^2}$$

for all $j > k$.

• Flow for $X(t)$ and $Y(t)$:

$$\frac{dX}{dt} = XZ,$$

$$\frac{dY}{dt} = YW.$$

• The flow is now ready to be integrated by any IVP solvers.
Convergence

- The approach fails only when:
 - $P(t)$ becomes singular in finite time — requires a restart.
 - $F(P(t), R(t))$ converges to a nonzero constant — a LS local solution is found.
- Gradient flows enjoy global convergence:
 - $G(t) := F(P(t), R(t))$ enjoys the property:
 \[
 \frac{dG}{dt} = -\|\nabla F(P(t), R(t))\|^2 \leq 0
 \]
 along any solution curve $(P(t), R(t))$.
 - Suppose $P(t)$ remains nonsingular. Then $G(t)$ converges.
Numerical Experiment

- Integrator: MATLAB ODE SUITE
 - $\texttt{ode113} =$ ABM, PECE, non-stiff system.
 - $\texttt{ode15s} =$ Klopfenstein-Shampine, quasi-constant step size, stiff system.

- Stopping criteria:
 - $\text{ABSERR} = \text{RELERR} = 10^{-12}$.
 - $\|\Delta(P, R)\| \leq 10^{-9} \Rightarrow$ a stochastic matrix has been found.
 - Relative improvement of $\Delta(P, R)$ between two consecutive output points $\leq 10^{-9} \Rightarrow$ a LS solution is found.
Example 1

• Spectrum:

\[\{1.0000, -0.2403, 0.1186 \pm 0.1805i, -0.1018\} \]

• Initial values:

\[
P_0 = \begin{bmatrix}
0.2002 & 0.4213 & 0.9229 & 0.7243 & 0.4548 \\
0.6964 & 0.0752 & 0.9361 & 0.2235 & 0.0981 \\
0.7538 & 0.3620 & 0.2157 & 0.5272 & 0.2637 \\
0.4366 & 0.3220 & 0.8688 & 0.1729 & 0.8697 \\
0.8897 & 0.1436 & 0.7097 & 0.5343 & 0.7837
\end{bmatrix}
\]

\[
R_0 = 0.8328 \mathbf{1}
\]

• Limit point:

\[
B = \begin{bmatrix}
0.1679 & 0.0522 & 0.4721 & 0.0000 & 0.3078 \\
0.1436 & 0.1779 & 0.4186 & 0.1901 & 0.0698 \\
0.0000 & 0.1377 & 0.5291 & 0.3034 & 0.0299 \\
0.0560 & 0.4690 & 0.2404 & 0.0038 & 0.2309 \\
0.1931 & 0.1011 & 0.5339 & 0.1553 & 0.0165
\end{bmatrix}.
\]
Figure 2: A log-log plot of $F(P(t), R(t))$ versus t for Example 1.
Both solvers work reasonably.

- **ode15s** advances with larger step sizes at the cost of solving implicit algebraic equations.
- Jacobians are calculated by finite difference. Function calls could be reduced by fewer output points.

- Different initial values lead to different stochastic matrices.
Example 2

• Spectrum:

\{1.0000, -0.2608, 0.5046, 0.6438, -0.4483\}

• Looking for a Markov chain with ring linkage, i.e., each state is linked at most to its two immediate neighbors.
• Initial values:

\[
P_0 = \begin{bmatrix}
0.1825 & 0.7922 & 0.2567 & 0.9260 & 0.9063 \\
0.1967 & 0.5737 & 0.7206 & 0.5153 & 0.0186 \\
0.5281 & 0.2994 & 0.9550 & 0.6994 & 0.1383 \\
0.7948 & 0.6379 & 0.5787 & 0.1005 & 0.9024 \\
0.5094 & 0.8956 & 0.3954 & 0.6125 & 0.4410
\end{bmatrix}
\]

\[
R_0 = \begin{bmatrix}
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1
\end{bmatrix}
\]

• Limit point:

\[
D = \begin{bmatrix}
0.0000 & 0.3094 & 0 & 0 & 0.6906 \\
0.0040 & 0.5063 & 0.4896 & 0 & 0 \\
0 & 0.0000 & 0.5134 & 0.4866 & 0 \\
0 & 0 & 0.7733 & 0.2246 & 0.0021 \\
0.4149 & 0 & 0 & 0.3900 & 0.1951
\end{bmatrix}
\]
Example 3

- Spectrum

\{1.0000, -0.2403, 0.3090 \pm 0.5000i, -0.1018\}

- Initial values: same as Example 1 (or modify R_0).

- Slow convergence:

$$E = \begin{bmatrix}
0.3818 & 0.0000 & 0.4568 & 0.0000 & 0.1614 \\
0.5082 & 0.3314 & 0.0871 & 0.0049 & 0.0684 \\
0.0000 & 0.0000 & 0.5288 & 0.4712 & 0.0000 \\
0.0266 & 0.7634 & 0.0292 & 0.0310 & 0.1498 \\
0.5416 & 0.0524 & 0.3835 & 0.0196 & 0.0029
\end{bmatrix}$$

$$F = \begin{bmatrix}
0.3237 & 0 & 0.4684 & 0 & 0.2079 \\
0.4742 & 0.3184 & 0.1303 & 0.0007 & 0.0764 \\
0 & 0.0000 & 0.5231 & 0.4769 & 0 \\
0.0066 & 0.7536 & 0.0372 & 0.0958 & 0.1068 \\
0.5441 & 0.0429 & 0.3959 & 0.0022 & 0.0149
\end{bmatrix}$$
Figure 4: A log-log plot of $F(P(t), R(t))$ versus t for Example 3.
Conclusion

- The theory of solvability on the StIEP or the NIEP is yet to be developed.
- An ODE approach capable of solving the StIEP or the NIEP numerically, if the prescribed spectrum is feasible, is proposed.
- The method is easy to implement by existing ODE solvers.
- The method can also be used to approximate least squares solutions or linearly structured matrices.