Chapter 12

Conclusions

- Area of applications.
- Relation to discrete methods.
- Challenge to ODE techniques.
- More to do.
Area of Applications

- Numerical analysis:
 - Eigenvalue computation.
 - Singular value computation.
 - Construction of balanced realizations.
 - Inverse spectrum problems.

- Matrix theory:
 - Existence question.
 - Nearness problems.

- Mechanics:
 - Mechanical system simulation.
 - Structure analysis.
 - Multibody oscillation.

- Control theory:
 - State or output feedback pole assignment problem.
 - Multivariable system identification.
• Signal processing.
 ◦ Molecular spectroscopy.
 ◦ Antenna array processing.
 ◦ Seismic tomography.

• Multivariate statistical analysis:
 ◦ Principal component analysis.

• Mathematical programming.
 ◦ Interior point method for linear programming.
 ◦ Quadratic assignment problem.
Relation to Discrete Methods

- Offer critical insights into the understanding of the dynamics of discrete methods.
 - QR algorithm.
 - SVD algorithm.
 - Jacobi algorithm.

- Unify a variety of discrete methods as special cases of different discretization.
 - QR-type flow.
 - Spectrally constrained flow.

- Give rise to the design of new numerical algorithms
 - Difference methods resulted from discretization of differential systems.
 - Geometric methods resulted from the underlying topology.
Challenge to ODE Techniques

• May be used as benchmark problems for testing new ODE techniques.
 ◦ Large scale computation — Size grows as n^2.
• New ODE techniques may further benefit the numerical computation.
 ◦ Parallel ODE methods (Burrage, ’95).
More to Do

- Enable to tackle existence problems that are seemingly impossible to be solved by conventional discrete methods.
 - Inverse eigenvalue problems.
- Usually offers a global method for solving the underlying problem.
- Analog realization:
 - Cheap and fast.
 - Discrete counterparts may not be easy to find.
 - Suffers from limited accuracy.