1. (15 pts) Determine if the limit of the following functions exist. If it exists, find the limit.
 A (5 pts): \(\lim_{x \to 0} \frac{1}{x^2 + 2x} \)
 B (5 pts): \(\lim_{x \to -2} \frac{x^2 - x - 2}{x - 2} \)
 C (5 pts): \(\lim_{x \to \infty} \frac{x - 4}{x^4 + 4} \)

2. (15 pts) For the function \(f(x) = \frac{1}{2x - 1} \)
 A (5 pts): Calculate the first derivative.
 B (10 pts): Use definition of the derivative
 \[
 f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
 \]
 to compute the derivative at \(x = 1 \).

3. (25 pts) Calculate the first and second order derivatives of the following functions
 A (5 pts): \(f(x) = 3x^3 + 2x^2 + 3 \)
 B (5 pts): \(f(x) = \sqrt{1 + 2x} \)
 C (5 pts): \(f(x) = (1 + x + 2x^2)^2 \)
 D (5 pts): \(f(x) = \left(\frac{\sqrt{x}}{x + 1} \right)^{3/2} \) (find only the first derivative)
 E (5 pts): For equations in questions A and C determine how many non-zero derivatives that can be found.

4. (25 pts). An object travels \(s(t) \) km in \(t \) hours, where \(s(t) = \frac{t^3}{8} - \frac{2t^2}{3} + 6t + 15 \).
 A (5 pts): What is the velocity at \(t = 6 \) hours?
 B (5 pts): What is the acceleration at \(t = 1 \) hour?
 C (5 pts): How far can the object travel in \(t = 2 \) hours?
 D (5 pts): When is the object traveling with a velocity of 6 km/hour?
 E (5 pts): What is the average velocity during the first 3 hours?

5. (25 pts). For the function \(f(x) = x^3 - 2x^2 + x + 9 \) defined for \(0 \leq x \leq 1.5 \).
 A (5 pts): Relative max/min points.
 B (5 pts): Absolute max/min points.
 C (5 pts): Describe concavity of the function.
 D (5 pts): Find possible inflection points.
 E (5 pts): Sketch the graph.