Homework problem (the logistic growth curve p281 in the book)

DUE Monday 11/9

The logistic growth differential equation

\[P'(t) = kP(M - P) \]

Has the solution

\[P(t) = \frac{M}{1 + Be^{-Mt/k}} \]

1. What is the value of \(P(t) \) for \(t = 0 \)
2. What is the \(\lim_{t \to \infty} P(t) \)
3. Differentiate the solution to show that \(P'(t) = kP(M - P) \)
4. Find \(k, B, M \) for the following problem:
 In a lake there is 100 fish at time \(t = 0 \), after three month \((t = 3) \) the lake has 250 fish. The maximum capacity of the lake is 1000 fish.

[Note: This is the same problem that we did in class, but note that we had the equation for \(P(t) \) wrong. The correct equation is given above].