1. **(15 pts)** Find all eigenvalues and corresponding eigenfunctions for the following Sturm-Liouville problem

\[y'' + y' + (1 + \lambda)y = 0, \quad y(0) = y(1) = 0. \]

Solution:

The eigenvalues are \(\lambda_n = -\frac{3}{4} + n^2 \pi^2, \quad n = 1, 2, \ldots \)

The corresponding eigenfunctions are \(y_n = \alpha_n \sin(n\pi x), \) where \(\alpha_n \neq 0 \) and \(n = 1, 2, \ldots \).

2. **(5 pts)** Consider the piecewise differentiable function \(f(x) \) defined by

\[f(x) = \begin{cases}
-2 & -3 \leq x < -1 \\
1 + x^2 & -1 < x \leq 2 \\
2 - x & 2 < x \leq 3
\end{cases} \]

(a) Sketch the graph of \(f(x) \). Use dots (•) to indicate where a curve segment is defined at an endpoint, and circles (○) to indicate where a curve segment is not defined at an endpoint.

(b) Let \(F(x) \) denote the Fourier series of \(f(x) \) on \([-3, 3]\). Use the Fourier convergence theorem to find the values \(F(-3), F(-1), F(2), \) and \(F(3) \).

Solution: \(F(-3) = F(3) = -\frac{3}{2}, \) \(F(-1) = 0, \) and \(F(2) = \frac{5}{2}. \)
(c) Sketch the graph of \(F(x) \) using dots and circles as in (a.).

Solution: The graph is the same as the graph of the function except at \(x = -3, x = -1, x = 2 \) and \(x = 3 \), where the value of the Fourier series is the average of the left and right limits at those points.

3. **(10 pts)** Explain, with sufficient detail and by quoting the appropriate results and/or theorem(s), why the following integral formula is **true**:

\[
\int_0^{5\pi} \sin\left(\frac{2x}{5}\right)\sin(3x)dx = 0
\]

(Simply evaluating the integral earns you zero points on this problem).

Solution: Consider the following Sturm-Liouville problem on the interval \([0, 5\pi]\): \(X'' + \lambda X = 0 \) with \(X(0) = 0 \) and \(X(5\pi) = 0 \). The eigenfunctions of the problem are \(X_n = c_n \sin\left(\frac{n\pi x}{5}\right) \), and they satisfy the orthogonality relation

\[
\int_0^{5\pi} \sin\left(\frac{n\pi x}{5}\right)\sin\left(\frac{m\pi x}{5}\right)dx = 0 \quad \text{for} \quad m \neq n
\]

Since \(2 \neq 15 \), the integral in question is simply this orthogonality relation with \(n = 2 \) and \(m = 15 \).

4. **(10 pts)** Find the general solution of the ODE

\[
y'' - \frac{7}{x}y' + (36x^4 - \frac{20}{x^2})y = 0
\]

[HINT: Recall that the following general form: \(y'' - \left(\frac{2n-1}{x}\right)y' + (b^2x^2c^2x^{-2} + a^2x^{-2})y = 0 \). **Solution:** \(y = c_1 x^4 J_2(2x^3) + c_2 x^4 Y_2(2x^3) \)]

5. **(10 pts)** Let \(\{\phi_n(x)\}_{n=1}^{\infty} \) be the eigenfunctions of a **regular** Sturm-Liouville problem on the interval \([a, b]\) corresponding to distinct eigenvalues \(\{\lambda_n\} \). Two eigenfunctions, say \(\phi_m \) and \(\phi_n \) corresponding to eigenvalues \(\lambda_m \) and \(\lambda_n \), will thus satisfy the following differential equations

(a) \((r(x)\phi_m)' + (q(x) + p(x)\lambda_m) \phi_m = 0 \) ,
(b) \((r(x)\phi_n)' + (q(x) + p(x)\lambda_n) \phi_n = 0 \)

where the functions \(r(x) \), \(p(x) \) and \(q(x) \) are the same in both equations. Multiplying equation (a) by \(\phi_n \), multiplying equation (b) by \(\phi_m \), and then subtracting one finds that the resulting equation can be put in the form

\[
(\lambda_n - \lambda_m)(p(x)\phi_m \phi_n) = [r(x)(\phi'_m \phi_n - \phi'_n \phi_m)]'
\]

Starting from this equation prove that

\[
\int_a^b p(x)\phi_m(x)\phi_n(x)dx = 0 \quad \text{for} \quad n \neq m
\]

for this **REGULAR** Sturm-Liouville problem.

Solution: See textbook or your class notes.

6. **(10 pts)** Consider the differential equation

\[
xy'' + 2y' + (x^3 + \lambda x^2)y = 0 \quad x > 0
\]

(a) Write this equation in Sturm-Liouville form and identify the functions \(r(x), p(x) \) and \(q(x) \).

Solution: The S-L form of the equation is \((a^2y')' + (x^4 + \lambda x^2)y = 0 \). Hence \(r(x) = x^2, p(x) = x^3 \) and \(q(x) = x^4 \).

(b) Classify the following three boundary value problems as a

i. **Regular** Sturm-Liouville problem on an appropriate interval
ii. **Periodic** Sturm-Liouville problem on an appropriate interval

iii. **Singular** Sturm-Liouville problem on an appropriate interval

iv. **Non of the above**

BVP #1

\[xy'' + 2y' + (x^3 + \lambda x^2)y = 0 \quad y(1) = y(4), y'(1) = y'(4), \quad 1 \leq x \leq 4 \]

Solution: Non of the above. The reason the problem is NOT periodic is that \(r(1) \neq r(4) \).

BVP #2

\[xy'' + 2y' + (x^3 + \lambda x^2)y = 0 \quad y(1) = y(4) = 0, \quad 1 \leq x \leq 4 \]

Solution: Regular on \([1,4]\).

BVP #3

\[xy'' + 2y' + (x^3 + \lambda x^2)y = 0, \quad y \text{ is bounded at } x = 0, \text{ and } y'(4) = 0, \quad 0 \leq x \leq 4 \]

Solution: Singular on \([0,4]\).

5pts extra credit:

Let \(f(x) \) be differentiable on the interval \([-1,1]\). Suppose that \(f(x) \) is expanded in a Fourier-Legendre series \(\sum_{n=0}^{\infty} c_n P_n(x) \) and that the following information is known about the coefficients \(c_n \):

\[c_1 = c_3 = 0, \text{ and also all } c_n = 0 \text{ for } n \geq 5. \]

What can you say about the function \(f(x) \)? That is, describe the function \(f(x) \) as **completely as possible**, based on the above information.

The function is even and contains at least an \(x^4 \) term.

Take-home exam problems: 35%

1. Problem #8, page 792.

2. Problem # 14, page 813. Use the following values for the parameters in the problem:

\(a^2 = 4, \ L = \pi, \ \alpha = 2 \), and \(f(x) = (\sin(x))^2 \).