A Few Video Tips for Shooting a Welcome Video

Script Tips: Your Welcome Video will be a reusable learning object. Therefore, your script should avoid mentioning "time-sensitive" information, such as the current term, due dates, or assignments that will likely change from year to year. Examples of content might include information about the type of course you teach, your teaching philosophy, research interests, and an encouragement for students to stay in touch and use the online tools that you have set up in either WolfWare or WebCT/Vista, such as the discussion board.

Flow: Try to make your script as conversational as possible. You want to sound natural, not like you are giving a speech. You might want to pretend that you are giving your class welcome in a face to face class, and tape what you are saying. This might help you develop a more natural script. Usually when we talk, we use shorter sentences than when we write, so keep that in mind.

Clothing: On the day of your video taping, please wear light colored clothing. Avoid solid white, bright red, and tight patterns, such as plaids or stripes.

Preparation: In order to assist you on the day of your video shoot, your script will be displayed on a teleprompter during the taping session. You will not need to memorize the content, but I encourage you to become very familiar with it. The more familiar you are with the script, the more comfortable you will feel during taping.

Post-production: You may elaborate from the text of your script while filming if it seems the natural thing to do at the time. However, an essential part of our post-production effort is to caption the video to assure Section 508 compliance for the hearing impaired. The more you have migrated from your script, the more time it will take us to process the video. Normally, the post-production edits should not require more than one week to complete.

I hope this information is helpful. We look forward to working with you on this video!

Example Scripts:

Example 1: David Shew – Plant Pathology 315 (PP 315)

Example 2: Michelle Schroeder – Introduction to Agroecology (CS 230)

Example 3: Jan Spears – Seed Biology (CS 524)
Hello and welcome to the home page for PP 315, Principles of Plant Pathology. My name is David Shew and I will be your instructor for this introduction to the science of Plant Pathology and the microorganisms that cause diseases of plants. Whatever group of plants holds special interest for you, whether it is ornamentals, horticultural crops, turfgrasses, or row crops, an important part of establishing and maintaining the health of these plants is limiting the potential impacts of diseases on their growth and development.

In this class you will be introduced to the organisms and agents that cause plant diseases. We will learn how they cause disease and how we as plant managers can best approach their management and control. In the lab portion of the class, you will see and work with many of the microorganisms that cause disease and learn to recognize many of the types of symptoms that plant pathogens cause on plants. In greenhouse experiments, we will use plant pathogens that you grow to inoculate plants and test their ability to cause disease.

The web site for the class is richly illustrated with color images and figures and there are extensive links to other sources of information on each topic where available. For each lecture and lab, you will find notes, power point presentations, disease profiles and videos to enhance the material presented. A major challenge in this class will be the extensive vocabulary that you will have to master. To help you with this, you will find a vocabulary for each lecture and lab. In addition, many of these terms have linked images, definitions, and where appropriate an audio file has been created to help with pronouncing the term.

Please open the syllabus to review course objectives and the material to be covered. I look forward to working with each of you in this introduction to the exciting and ever changing field of plant pathogens and the diseases they cause. Feel free to contact me if you have any questions concerning the course or the course web site.
Hello and welcome to the Introduction to Agroecology course. I am Dr. Michelle Schroeder and I am an assistant professor in the Crop Science Department here at North Carolina State University. I am an ecologist and my research focuses on examining the ecological interactions between plants and arbuscular mycorrhizal fungi both in natural systems and agricultural systems. Mycorrhizal fungi are mutualistic soil fungi that can increase plant uptake of phosphorus. Understanding how mycorrhizal fungi and plants interact has special significance in sustainable agricultural systems, helping us to reduce phosphorus fertilizer input. Much of my research has taken place in tropical agricultural systems, such as Costa Rica, Mexico and Panama, where phosphorus soil resources are limiting and mycorrhizal fungi potentially have the greatest benefit for crop growth. Only through understanding the ecological interactions among plants, animals, and other organisms within agriculture, can we begin to design and manage sustainable agricultural systems. That is what this course is about. In this course, we will explore various components of agroecology, which is the application of ecological concepts and principles to the design and management of sustainable agroecosystems. We will focus on understanding these ecological principles related to soil ecology, nutrient cycling, energy flow, integrated pest management, cropping systems design, and incorporating animals in sustainable agricultural systems. We will discuss agricultural practices for their sustainability both through analysis of case studies examples and through a virtual tour of a local North Carolina farm. Your active participation in discussion groups will be required in this course as we read a variety of opinions and scientific research papers. Again, I welcome you to this Introduction to Agroecology course and I look forward to interacting with you all.
Hi. My name is Jan Spears and welcome to Seed Physiology. I have always been fascinated by seeds; how they are formed and why they die; how they package and use materials required for germination; how some seeds can lie dormant for decades and spring to life with the slightest stimulation, while others will die within a few hours if germination does not occur immediately after they are formed. It is all about species survival; that is the function of seeds. And nature has built in some interesting ways for seeds of each species to carry out their mission.

In this class we will look at the biological, physiological and morphological aspects of seed formation, maturation, germination, and deterioration. And we will explore how the environment during these stages of a seed’s life can influence the physiological quality of that seed. We will also look at recent scientific advances that affect seeds. For example, over the past 10 years, we have seen dramatic advances in our ability to alter plant DNA for commercial uses. Molecular plant breeders have developed techniques to enhance the nutritional quality of seeds - higher oil, higher protein, altered fatty acid content, and altered amino acid content. And this is of concern for many seed physiologists - for we know that these seed components are vital for the seed if it is to carry out its mission to germinate at the right time and produce a seedling that will eventually create more seeds. So in our class we will look closely at how changing a seed’s nutritional quality through genetic engineering may influence its physiological quality and what implication this might have on seed production.

Another area we will study is seed dormancy - a unique survival technique for many species. Since the time our society began commercial breeding for agronomic and horticultural crops, breeders have selected away from this trait. Therefore, we seldom see dormancy in seeds for our major crops. However, weed seed dormancy is an issue for most farmers. Our class will
take an in-depth look dormancy mechanisms, how they function and how they are overcome in nature and artificially.

These are just a few examples of what we will cover this semester. And as we explore the inner workings of seeds, I hope that you will find them as captivating as I do.

The web site for this class is illustrated, where possible, with color images and there are several links to other sources of information for many of the topics we will cover. For each topic you will find power point presentations and an occasional video sequence that will enhance the topics we are covering. Please feel free to contact me if you have any questions about the course or the course web site. I am looking forward to working with each of you as we explore seeds – inside and out.