Orbifold Cohomology for Global Torus Quotients

Rebecca Goldin
George Mason Univ.
AMS Special Session
Univ. of CT, Oct. 30, 2006

WARNING: These are lecture notes!

Introductory Example.

Consider the topological quotient of S^3 by S^1

where the action is:

$$S^3 = \{ (z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = 1 \}$$

S^1 acts on S^3 by:

$$\lambda \cdot (z_1, z_2) = (\lambda z_1, \lambda^3 z_2).$$

The quotient space S^3/S^1 is topologically a 2-sphere, but:

The orbit of points $(2, 0)$ form the North pole, with isotropy \mathbb{Z}_2:

1, -1 both fix $(2, 0)$

The orbit of a generic point (z_1, z_2)
$(z_1, z_2 \neq 0)$ is smooth in the quotient.

it really looks like a lemon.

The orbit of ∞ pts $(0, z_2)$ form the South pole, with isotropy \mathbb{Z}_3:

1, $e^{2\pi i/3}$, $e^{4\pi i/3}$

all fix $(0, z_2)$.
The lemon is not the global quotient of any space by a finite group.

The inertial cohomology

How can we devise an invariant to tell the difference between the smooth S^2 and the lemon?

Introduce the inertial ring.

Let M be a manifold with a locally free T action (here, T is a torus, and loc. free means finite isotropy).

Then as a (graded) vector space:

$$NH^*_{T^0}(M) := \bigoplus_{g \in T} H^*(M^g/T)$$

$$M^g = \{ m \in M \mid g \cdot m = m \}$$

(Many $M^g = \emptyset$)

- The grading $*$ is shifted from left hand side to right hand side. We won't discuss this.

- The grading \oplus is over the group elements. We won't discuss this either (both gradings are related to the product structure, which we won't have time for).
In the case of \(M = S^3 \) and \(T = S' \) with the action as before,

\[
NH^*: (S^3) = \frac{H^*(S^3)}{g=1} \oplus \frac{H^*(i(z,0,0)\frac{1}{3})}{g=-1} \oplus \frac{H^*(i(0,1,2)\frac{1}{3})}{g = e^{2\pi i/3}} \oplus \frac{H^*(i(0,2,1)\frac{1}{3})}{g = e^{4\pi i/3}}
\]

Equivariant Cohomology

\[
\mathcal{H}^*_T(M) := H^*\left(\frac{M \times ET}{T}\right)
\]

where ET is a contractible space on which \(T \) acts freely, and \(M \times ET := (M \times ET) / T \)

Note: \(\mathcal{H}^*_T(M) = H^*(M / T) \) when \(T \) acts freely.

We may rewrite:

\[
NH^*_{\mathcal{T}}(M) := \bigoplus_{g \in T} H^*_T(M^g)
\]

(when \(T \) acts on \(M \) locally freely).
Chen & Ruan describe a funny ring structure on this space, but it's not in practice easy to compute.

Idea: move away from locally free actions

Let Y be a Hamiltonian T-space. ($T = \text{compact abelian Lie group}$)

This means Y is symplectic (ω has a closed, non-degenerate 2-form ω on it).

and if $\xi \in \text{Lie}(T)$ is a vector in the tangent space, it generates the vector field X_ξ on Y, then \exists function ϕ^ξ on Y such that

$$\omega(X_\xi, \cdot) = d\phi^\xi.$$

In particular $\phi : Y \to \text{Lie}(T)^*$ defined by

$$\langle \phi(p), \xi \rangle \coloneqq \phi^\xi(p)$$

is a moment map for $T \acts Y$.

Hamiltonian T-spaces do not have locally free actions: if Y is compact, the functions ϕ^ξ have max/min on Y.

$\Rightarrow \ \text{df}_\phi^\xi = 0$ at these pts

\Rightarrow by nondegen. ω, $X_\xi = 0$ at these points

\Rightarrow the ST generated by (rational) ξ fixes the crit. point of ϕ^ξ.
However, the inertial cohomology ring is still well-defined using equivariant cohomology

\[NH^*_T(Y) := \bigoplus_{g \in G} H^*_T(Y^g) . \]

In the case that \(T \simeq Y \) locally freely, this is the Chen-Ruan cohomology of \(Y_T \).

In the case \(q : T \simeq Y \) in a Hamiltonian fashion, this is something else.

If \(T \simeq Y \) in a Hamiltonian fashion with fixed points \(Y^T \), then

\[H^*_T(Y) \rightarrow H^*_T(Y^T) \text{ is an INJECTION.} \]

If \(Y^T \) is isolated,

\[H^*_T(Y) \rightarrow \bigoplus_{p \in Y^T} H^*_T(p) \]

\[= \bigoplus_{p \in Y^T} \mathbb{Q}[u_1, \ldots, u_d] \text{ where } d = \dim T \]

\[(\text{since } H^*_T(p) = H^*_T(p^T \cap T) = H^*_T(\mathbb{C}P^d)) \]

Contrast this to ordinary cohomology where there is only degree 0 cohomology on \(Y^T \), when isolated.

\[\text{AND NO POSSIBLE INJECTION IN GENERAL.} \]
Let \(\phi : Y \to \text{Lie}(T)^* \)
be a moment map. Assume \(0 \) is a regular value.
Then \(\phi^{-1}(0) \cap Y \) is a submanifold
with a locally free \(T \)-action.

Ex

\(Y = S^2 \), \(\omega \) = volume form

\(S' \cap Y \) by spinning it on \(z \)-axis, fixing \(N \) and \(S \) poles

\(
\begin{align*}
\phi : Y &\to \mathbb{R} \\
S^2 &\xrightarrow{\text{ht function}} \\
&\begin{cases} 1 \\
-1 \end{cases}
\end{align*}
\)

\(0 \) is a regular value.
\(\phi^{-1}(0) \) is equator. It has a free \(S' \)-action.

The symplectic reduction

\(Y//T := \phi^{-1}(0)/T \)

is an orbifold.
Theorem (G.-H. Holm, Knutson): There is a surjection
\[NH^*_\mathbb{T}(Y) \rightarrow NH^*_\mathbb{T}(\phi^{-1}(0)) \]
\[\cong H^*_{CR}(Y//\mathbb{T}) \]
as rings from the inertial cohomology
of a Hamiltonian \(\mathbb{T} \)-space \(Y \) to
the Chen-Ruan cohomology of the symplectic quotient \(Y//\mathbb{T} \).

If \(Y = T^*\mathbb{C}^n \)
is Hyperkähler, and \(Y//\mathbb{T} \)
is a hypertoric variety, then

Thm (G.-H. Harada),
\[NH^*_\mathbb{T}(Y) \rightarrow H^*_{CR}(Y//\mathbb{T}) \]
is also a surjection.

By the way, the lemon (our original example)
is a symplectic reduction

of \(\mathbb{C}^2 \) by an \(S' \) action:

\[\lambda: (z_1, z_2) \mapsto (\lambda^2 z_1, \lambda^3 z_2). \]
The moment map \(\phi: \mathbb{C}^2 \rightarrow \mathbb{R} \) is given by

\[(z_1, z_2) \mapsto |z_1|^2 + |z_2|^2 - 1. \]

Then lemon = \(\phi^{-1}(0)/S' \).