Your Name: ______________________
For purpose of anonymous grading, please do not write your name on the subsequent pages.

This examination consists of 5 questions, each question counting for the given number of points, adding to a total of 38 points. Please write your answers in the spaces indicated, or below the questions (using the back of the sheets if necessary). You are allowed to consult three 8.5in × 11in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have 120 minutes to do this test.

Good luck!

Problem 1 ______

2 ______

3 ______

4 ______

5 ______

Total ______
Problem 1 (7 points, 4 points part a, 3 points part b):

(a) Consider the set of polynomials in x of degree 2 or less with real coefficients, $P_2 = \{ f(x) = a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{R} \}$. Define the following map

$$
\varphi: P_2 \times P_2 \longrightarrow \mathbb{R} \\
(f(x), g(x)) \longmapsto f(-1)g(-1) - f(0)g(0) + f(1)g(1)
$$

Is φ an inner product on P_2? Please justify your answer.

(b) The map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x/\sqrt{2} + y/\sqrt{2} \\ -x/\sqrt{2} + y/\sqrt{2} \end{bmatrix}$ is a two-dimensional rotation around the origin. By what degree?
Problem 2 (7 points, 4 points part a, 3 points part b):

(a) A person decides to predict the run-time of a program by designing a model as a formula depending only on the size of the input with unknown numerical coefficients and then determining the values of the coefficients by a least squares fit of a number of test run times. Of what pitfalls of this method should the person beware?

(b) Consider the linear differential equation \(y(t)' = a_1 y(t) \), whose solution is \(y(t) = c_1 e^{a_1 t} \), where \(a_1 \) and \(c_1 \) are real constants. Please derive the solution from an eigenvalue problem. Please show all your work.
Problem 3 (6 points): The following is a simplified scenario of an actual application of mathematical proofs to the Internet. Suppose a client computer first downloads data for a square matrix A that allows the rapid computation of $A^{-1}b$, where many b’s are subsequently obtained and processed by the client software. The agreed protocol is that the server computer presents a QR factorization of A, namely a matrix Q with pairwise orthogonal columns, a diagonal matrix D whose diagonal entries are the reciprocals of the squares of the lengths of the column vectors of Q, and an upper triangular matrix R with 1’s on the diagonal such that $A = QR$. The program in the client computer uses $A^{-1}b = R^{-1}(D(Q^Tb))$ where multiplication by R^{-1} is implemented as a back-substitution. However, before installing the data for Q, D, R the client computer must first prove that the transmitted data represent the QR factorization for a non-singular matrix, as anything else may lead to breakdown and possibly the introduction of a computer virus. Please describe what mathematical checks the client computer must perform.
Problem 4 (12 points, 6 points for each part): Consider the range/column-space V of the matrix $A = \begin{bmatrix} -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ as a plane in \mathbb{R}^3. The map $P: \mathbb{R}^3 \to V$ that computes the orthogonal projection $\hat{b} = P(b)$ of a vector $b \in \mathbb{R}^3$ onto V is a linear map, hence there exists a matrix $A_P \in \mathbb{R}^{3 \times 3}$, which is different from A, such that $\hat{b} = A_P b$.

(a) Please compute A_P via the normal equations of the method of least squares. [Hint: Remember that the columns of A_P are the $P(e_i)$, where e_i are the 3-dimensional unit vectors, i.e., vectors that are zero except for the i-th component which is 1, for $i = 1, 2, 3$. Furthermore, $P(e_i) = A\hat{x}_i$ where \hat{x}_i are the least square solutions to the problems $A\hat{x}_i \approx e_i$.]
(b) Please compute A_P by first finding the Gram-Schmidt orthogonalization u_1, u_2 of the column vectors of A and then plugging into the formula

$$\hat{b} = \left(b^T u_1 \right) / \left(u_1^T u_1 \right) u_1 + \left(b^T u_2 \right) / \left(u_2^T u_2 \right) u_2$$

with indeterminate entries for b.
Problem 5 (6 points): Consider the 4×4 matrix

$$A = \begin{bmatrix}
8 & -2 & -8 & 6 \\
5 & -5 & 4 & 5 \\
5 & -11 & 10 & 5 \\
-9 & 3 & 12 & -7 \\
\end{bmatrix}.$$

You are given the following eigenvectors for A:

$$\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix}, \text{ and } \begin{bmatrix} -4/3 \\ 2/3 \\ 1 \end{bmatrix}.$$

Please compute (without Maple) the eigenvalues of A and show your computation. You need not establish that the vectors given are actually eigenvectors of A.
