SHOW YOUR WORK. NO WORK = NO CREDIT. NO CALCULATORS.

1. (20%) Which of the following are subspaces? Justify your answer.
 (a) \(\{(x, y, z) \mid z = 2x + y\} \).
 (b) \(\{(x, y, z) \mid z \geq 0\} \).

2. (20%) Consider the vectors \(v_1 = (1, 1, 0, 0)^T, v_2 = (0, 0, 2, 2)^T, v_3 = (3, 1, 4, 1)^T \).
 (a) Determine whether the vectors \(v_1, v_2, \) and \(v_3 \) are linearly independent or dependent.
 (b) Is \(v = (1, 1, 1, 1)^T \in \text{span}\{v_1, v_2, v_3\} \)? Justify.

3. (20%) Determine whether the following set of vectors form a basis for \(\mathbb{R}^3 \). Justify your answer.
 (a) \(\{v_1 = (1, 1, 0)^T, v_2 = (1, 0, 1)^T, v_3 = (0, 1, -1)^T\} \).
 (b) \(\{v_1 = (3, -2, 1)^T, v_2 = (2, 3, 1)^T, v_3 = (2, 1, -3)^T\} \).

4. (20%) Let \(A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & -1 \\ 3 & 2 & 1 & 1 \end{pmatrix} \).
 Find a basis and determine the dimensions of the: (i) row space \(R(A) \), (ii) column space \(C(A) \) and
 (iii) null space \(N(A) \).

5. (20%) Consider the order bases \(B = \{(1, 1)^T, (1, 0)^T\} \) and \(C = \{(2, 3)^T, (4, 2)^T\} \) of \(\mathbb{R}^2 \). Let \(X \in \mathbb{R}^2 \)
 with \([X]_B = (-1, 2)^T \).
 (a) Find the transition matrix from the basis \(B \) to the basis \(C \).
 (b) Find the coordinate matrix \([X]_C \).