Numerical Issues in Randomized Algorithms:
Effect of Sampling on Condition Numbers

Ilse Ipsen

Joint work with Thomas Wentworth

North Carolina State University
Raleigh, NC, USA

Research supported in part by NSF CISE CCF
Given:
- Real $m \times n$ matrix Q with orthonormal columns, $Q^T Q = I$
- Real $c \times m$ “sampling” matrix S with $c \ll m$
- Desired error $0 < \epsilon < 1$

Want: Probability that
\[
\| (SQ)^T (SQ) - I \|_2 \leq \epsilon
\]
\[
\kappa(SQ) = \| SQ \|_2 \| (SQ)^\dagger \|_2 \leq \sqrt{\frac{1+\epsilon}{1-\epsilon}}
\]

Motivation: Randomized preconditioned LS solver \textit{Blendenpik}
[Avron, Maymounkov & Toledo 2010]$
\kappa(SQ) =$ Condition number of preconditioned matrix
Outline

1. Exactly(c) sampling
2. Sampling rows from matrices with orthonormal columns
3. Important property: Coherence
4. Probabilistic condition number bound for sampled matrices
5. Improving on coherence: Leverage scores
6. Summary
Exactly(c) Sampling

[Drineas, Kannan & Mahoney 2006]

\begin{verbatim}
for t = 1 : c do
 Sample k_t from \{1, \ldots, m\} with probability $1/m$
 independently and with replacement
end for
\end{verbatim}

Sampling matrix $S = \sqrt{\frac{m}{c}} \begin{pmatrix}
e_{k_1}^T \\
\vdots \\
e_{k_c}^T
\end{pmatrix}$

- S is $c \times m$, and samples exactly c rows
- Expected value $\mathbf{E}(S^T S) = I$
- S can sample a row more than once
Sampling from Matrices with Orthonormal Columns

Example: \(m = 6, \ n = 2, \ c = 3 \)

\[
Q = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}
\]

\[
\text{Prob}[SQ \text{ has full rank }] \approx 11\%
\]

\[
Q = \begin{pmatrix}
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}
\end{pmatrix}
\]

\[
\text{Prob}[SQ \text{ has full rank }] = 50\%
\]
Coherence = Largest Row Norm Squared

Q is $m \times n$ with orthonormal columns:

$$
\mu = \max_{1 \leq k \leq m} \| e_k^T Q \|_2^2
$$

$$
Q = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}
$$

high coherence: $\mu = 1$

$$
Q = \begin{pmatrix}
1/\sqrt{6} & -1/\sqrt{6} \\
1/\sqrt{6} & 1/\sqrt{6} \\
1/\sqrt{6} & -1/\sqrt{6} \\
1/\sqrt{6} & 1/\sqrt{6} \\
1/\sqrt{6} & -1/\sqrt{6} \\
1/\sqrt{6} & 1/\sqrt{6}
\end{pmatrix}
$$

low coherence $\mu = \frac{1}{3}$
Properties of Coherence

Coherence of $m \times n$ matrix Q with $Q^T Q = I$

$$\mu = \max_{1 \leq k \leq m} \| e_k^T Q \|_2^2$$

- $n/m \leq \mu(Q) \leq 1$

- **Maximal coherence:** $\mu(Q) = 1$
 At least one column of Q is a canonical vector

- **Minimal coherence:** $\mu(Q) = n/m$
 Columns of Q are columns of a Hadamard matrix

- Coherence measures “correlation with canonical basis”
Coherence in General

- Donoho & Huo 2001
 Mutual coherence of two bases

- Candés, Romberg & Tao 2006

- Candés & Recht 2009
 Matrix completion: Recovering a low-rank matrix by sampling its entries

- Mori & Talwalkar 2010, 2011
 Estimation of coherence

- Avron, Maymounkov & Toledo 2010
 Randomized preconditioners for least squares
Different Definitions

- **Coherence of subspace**
 Q is subspace of \mathbb{R}^m of dimension n
 P orthogonal projector onto Q
 \[
 \mu_0(Q) = \frac{m}{n} \max_{1 \leq k \leq m} \|e_k^T P\|_2^2 \quad (1 \leq \mu_0(Q) \leq \frac{m}{n})
 \]

- **Coherence of full rank matrix**
 A is $m \times n$ with $\text{rank}(A) = n$
 Columns of Q are orthonormal basis for $\mathcal{R}(A)$
 \[
 \mu(A) = \max_{1 \leq k \leq m} \|e_k^T Q\|_2^2 \quad \left(\frac{n}{m} \leq \mu(A) \leq 1\right)
 \]

- Reflects difficulty of recovering the matrix from sampling
Sampling from Matrices with Orthonormal Columns

- **Given:** $m \times n$ matrix Q with orthonormal columns
- **Sampling:** $c \times m$ matrix

\[
S = \sqrt{\frac{m}{c}} \begin{pmatrix} e_{k_1}^T \\ \vdots \\ e_{k_c}^T \end{pmatrix}
\]

- **Unbiased estimator:**
 \[
 E \left[Q^T S^T S Q \right] = Q^T Q = I
 \]

- **Sum of c random matrices:**
 \[
 Q^T S^T S Q = \frac{m}{c} Q^T e_{k_1} e_{k_1}^T Q + \cdots + \frac{m}{c} Q^T e_{k_c} e_{k_c}^T Q
 \]
Matrix Bernstein Inequality [Recht 2011]

- X_t independent random $n \times n$ matrices
- Expected value: \(E[X_t] = 0 \)
- Uniform boundedness: \(\|X_t\|_2 \leq \tau \) almost surely
- Variance: \(\rho_t \equiv \max\{\|E[X_t X_t^T]\|_2, \|E[X_t^T X_t]\|_2\} \)
- Desired error \(0 < \epsilon < 1 \)
- Failure probability \(\delta = 2n \exp\left(-\frac{3}{2} \frac{\epsilon^2}{3 \sum_t \rho_t + \tau \epsilon}\right) \)

With probability at least \(1 - \delta \)

\[
\left\| \sum_t X_t \right\|_2 \leq \epsilon
\]
Assumptions for Our Problem

- $m \times n$ matrix Q with orthonormal columns
- Coherence $\mu = \max_{1 \leq k \leq m} \| e_k^T Q \|^2$
- Sum of c matrices
 \[
 (SQ)^T (SQ) - I = \sum_{t=1}^{c} X_t \quad X_t = \frac{m}{c} Q^T e_k e_k^T Q - \frac{1}{c} I
 \]
- Expected value: $E[X_t] = 0$
- Uniform boundedness: $\|X_t\|_2 \leq m \mu / c$
- Variance: $E[X_t^2] \leq m \mu / c^2$
Condition Number Bound

- Desired error $0 < \epsilon < 1$
- Failure probability

$$\delta = 2n \exp \left(-\frac{3}{2} \frac{c \epsilon^2}{m \mu (3 + \epsilon)} \right)$$

With probability at least $1 - \delta$: $\| (SQ)^T (SQ) - I \|_2 \leq \epsilon$

This implies
With probability at least $1 - \delta$: $\kappa(SQ) \leq \sqrt{\frac{1 + \epsilon}{1 - \epsilon}}$
Implications of Bound

- Coherence must be sufficiently low

\[
\mu < \frac{3}{8} \frac{c}{m \ln(2n/\delta)}
\]

{Follows from \(\epsilon < 1 \)}

- Amount of sampling must be sufficiently large

\[
c \geq \frac{8}{3} \frac{m \mu}{\epsilon^2} \ln(2n/\delta)
\]

Minimal coherence \(\mu = n/m \):

\[
c \gtrsim \frac{(n \ln n)}{\epsilon^2}
\]
Tightness of Condition Number Bound

Q is $m \times n$ with orthonormal columns, $m = 10^4$, $n = 5$
Coherence $\mu = 1.5n/m$, success probability $1 - \delta = .99$
Little sampling: $n \leq c \leq 1000$

Bound holds for $c \geq 144 \approx \frac{8}{3} \frac{m\mu}{\epsilon^2} \ln (2n/\delta)$
Predictive for $c \geq 200$
Coherence is not Enough

\[G_{ood} = \begin{pmatrix}
\frac{1}{2} & 0 \\
\frac{1}{2} & 0 \\
\frac{1}{2} & 0 \\
0 & -\frac{1}{2} \\
0 & -\frac{1}{2} \\
0 & \frac{1}{\sqrt{2}}
\end{pmatrix} \quad B_{ad} = \begin{pmatrix}
\frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{2}} & 0 \\
0 & 1/\sqrt{2} \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix} \]

- Same coherence: \(\mu(G_{ood}) = \mu(B_{ad}) = \frac{1}{2} \)
- Sampling \(c = 3 \) rows
 \[\text{Prob}[S_{G_{ood}} \text{ has full rank}] \geq 73\% \]
 \[\text{Prob}[S_{B_{ad}} \text{ has full rank}] < 35\% \]
- Sampled \(B_{ad} \) matrices more likely to be rank deficient
Good Matrices

Q is $m \times n$ with orthonormal columns, $m = 10^4$, $n = 5$

Coherence $\mu = .05 = 100n/m$

If SQ has full rank, then $\kappa(SQ) \ll 10$

Low percentage of rank deficient SQ for $c \geq n$
Bad Matrices

\[Q \] is \(m \times n \) with orthonormal columns, \(m = 10^4, n = 5 \)

Coherence \(\mu = 0.05 = 100n/m \)

High percentage of rank deficient \(SQ \) for \(c \leq 2000 = m/n \)
Distinguishing Good and Bad Matrices with Same Coherence

Idea: Use all row norms

- Q is $m \times n$ with orthonormal columns
- Leverage scores = row norms squared

\[\ell_k = \| e_k^T Q \|_2^2, \quad 1 \leq k \leq m \]

- Coherence $\mu = \max_k \ell_k$
- Low coherence \approx uniform leverage scores

- Leverage scores of full column rank matrix A:
 Columns of Q are orthonormal basis for $\mathcal{R}(A)$

\[\ell_k(A) = \| e_k^T Q \|_2^2, \quad 1 \leq k \leq m \]
Statistical Leverage Scores

Hoaglin & Welsch 1978

Chatterjee & Hadi 1986

- Identify potential outliers in $\min_x \|Ax - b\|_2$
- Orthogonal projector onto $\mathcal{R}(A)$: $H = A(A^T A)^{-1} A^T$
- **Leverage score** H_{kk}: Influence of kth data point on LS fit
Statistical Leverage Scores

Hoaglin & Welsch 1978
Chatterjee & Hadi 1986

- Identify potential outliers in $\min_x \|Ax - b\|_2$
- Orthogonal projector onto $\mathcal{R}(A)$: $H = A(A^T A)^{-1} A^T$
- Leverage score H_{kk}: Influence of kth data point on LS fit

- QR decomposition: $A = QR$

$$H_{kk} = \|e_k^T Q\|_2^2 = \ell_k(A)$$

Application to randomized algorithms:
Drineas, Mahoney & al. 2006–2012
Assumptions for Our Problem

- **$m \times n$ matrix Q with orthonormal columns**
- **Leverage scores** $\ell_k = \|e_k^T Q\|_2^2$, $\mu = \max_{1 \leq k \leq m} \ell_k$

 $$L = \text{diag}(\ell_1 \ldots \ell_m)$$

- **Sum of c matrices**

 $$(SQ)^T (SQ) - I = \sum_{t=1}^c X_t$$
 $$X_t = \frac{m}{c} Q^T e_{k_t} e_{k_t}^T Q - \frac{1}{c} I$$

- **Expected value:** $\mathbf{E}[X_t] = 0$
- **Uniform boundedness:** $\|X_t\|_2 \leq m \mu / c$
- **Variance:** $\mathbf{E}[X_t^2] \leq m \|Q^T L Q\|_2 / c^2$
Condition Number Bound with Leverage Scores

- Desired error $0 < \epsilon < 1$
- Failure probability

$$\delta = 2n \exp\left(-\frac{3}{2} \frac{c \epsilon^2}{m (3 \left\| Q^T L Q \right\|_2 + \mu \epsilon)}\right)$$

With probability at least $1 - \delta$: $\left\| (SQ)^T (SQ) - I \right\|_2 \leq \epsilon$

This implies

With probability at least $1 - \delta$: $\kappa(SQ) \leq \sqrt{\frac{1+\epsilon}{1-\epsilon}}$
Leverage Scores vs. Coherence

Failure probability

$$\delta = 2n \exp \left(-\frac{3}{2} \frac{c \epsilon^2}{m (3 \| Q^T L Q \|_2 + \mu \epsilon) } \right)$$

• Bounds in terms of coherence:

 $$\mu^2 \leq \| Q^T L Q \|_2 \leq \mu$$

• Estimation in terms of largest leverage scores
 If $k = 1/\mu$ is an integer then

 $$\| Q^T L Q \|_2 \leq \mu \sum_{j=1}^{k} \ell[j]$$

 where $\ell[1] \geq \cdots \geq \ell[m]$
Summary

- **Randomized sampling** of rows from matrices with orthonormal columns

 - **Sampling strategy**: Exactly(c)
 - Bernoulli sampling is very similar

 - **Coherence**: Largest row norm squared

 - Bounds for condition number of **sampled** matrices
 - Explicit and non-asymptotic
 - Realistic even for **small matrix dimensions**

 - **Leverage scores**: Row norms squared

 - Tighter bounds: Replace coherence by leverage scores

How much tighter???