Numerical Accuracy and Sensitivity of Monte Carlo Matrix Multiplication

Ilse Ipsen

North Carolina State University
Raleigh, NC, USA

Joint work with: John Holodnak
Randomized Matrix Multiplication

Existing Work:

Cohen & Lewis 1997, 1999
Frieze, Kannan & Vempala 1998
Drineas & Kannan 2001
Sarlós 2006
Drineas, Kannan & Mahoney 2006
Belabbas & Wolfe 2008

Applications:

Importance sampling strategy for query matching

Overview:

Relative error due to randomization
Sensitivity to perturbations
Randomized Inner Product
[Drineas, Kannan & Mahoney 2006]

Input: real vectors $a = (a_1 \ldots a_n)^T$, $b = (b_1 \ldots b_n)^T$
probabilities $p_k > 0$, $\sum_{k=1}^n p_k = 1$
number c

Output: Approximation X to $a^T b$
from c randomly sampled element pairs a_k, b_k

$X = 0$
for $t = 1 : c$ do
 Sample k_t from $\{1, \ldots, n\}$ with probability p_{k_t}
 independently and with replacement
 $X = X + \frac{a_{k_t} b_{k_t}}{c \ p_{k_t}}$
end for
Output of Randomized Inner Product

- Random variable $X_t \equiv \frac{a_k b_k}{c p_k}$

- X_t takes on value $\frac{a_k b_k}{c p_k}$ with probability p_k

- Expected value ("average")

$$E [X_t] = \sum_{k=1}^{n} p_k \frac{a_k b_k}{c p_k} = \sum_{k=1}^{n} \frac{a_k b_k}{c} = \frac{a^T b}{c}$$

- Output $X = X_1 + \cdots + X_c$

$$E [X] = E [X_1] + \cdots + E [X_c] = \sum_{t=1}^{c} \frac{a^T b}{c} = a^T b$$

- Unbiased estimator: Expected value = exact value
Absolute Error due to Randomization

[Drineas, Kannan & Mahoney 2006]

- **Uniform probabilities:** $p_k = 1/n$, $1 \leq k \leq n$

For every $\delta > 0$ with probability at least $1 - \delta$

$$\left| X - a^T b \right| \leq n \max\{\|a\|_{\infty}, \|b\|_{\infty}\}^2 \sqrt{\frac{8 \ln(2/\delta)}{c}}$$

- **Identical products:** $a_k b_k = \gamma$, $1 \leq k \leq n$

$$X = \underbrace{\frac{n}{c} \gamma + \cdots + \frac{n}{c} \gamma}_{c} = n \gamma = a^T b$$

Randomized algorithm gives **exact result** for any c

Bound is too pessimistic
Relative Error due to Randomization

General probabilities: \(p_k > 0, \sum_k p_k = 1 \)

Deviation from identical products:

\[
\text{osc} \left(\frac{ab}{p} \right) \equiv \max_j \frac{a_j b_j}{p_j} - \min_k \frac{a_k b_k}{p_k}
\]

[Lynn & Timlake 1969, Deutsch & Zenger 1971]

For every \(\delta > 0 \) with probability at least \(1 - \delta \)

\[
\left| \frac{X - a^T b}{a^T b} \right| \leq \frac{\text{osc} \left(\frac{ab}{p} \right)}{|a^T b|} \sqrt{\frac{\ln(2/\delta)}{2c}}
\]

For every \(\delta > 0 \) with probability at least \(1 - \delta \)

\[
\left| \frac{X - a^T b}{a^T b} \right| \leq \frac{\text{osc} \left(\frac{ab}{p} \right)}{|a^T b|} \sqrt{\frac{\ln(2/\delta)}{2c}}
\]

\text{Condition} \quad \text{Algorithm}
Relative Error vs Bound

$a_k, b_k \ iid \ uniform \ [0, 1], \ n = 10^5, \ uniform \ probabilities$

Relative errors $\frac{|X - a^T b|}{|a^T b|}$ for every c

Bound with probability .99
Relative Error vs Bound

a_k, b_k iid uniform $[-0.5, 0.5]$, $n = 10^5$, uniform probabilities

Relative errors $|X - a^T b|/|a^T b|$ for every c

Bound with probability .99
Randomized Matrix Multiplication

[Drineas, Kannan & Mahoney 2006]

\[A = \begin{pmatrix} a_1 & \ldots & a_n \end{pmatrix} \quad B = \begin{pmatrix} b_1^T \\ \vdots \\ b_n^T \end{pmatrix} \]

Sum of outer products \(AB = a_1 b_1^T + \cdots + a_n b_n^T \)

- Random variable \(X_t = \frac{a_{kt} b_{kt}^T}{cp_{kt}} \)
- \(X_t \) takes on value \(\frac{a_k b_k^T}{cp_k} \) with probability \(p_k > 0 \)
- Output \(X = X_1 + \cdots + X_c \)
Normwise Error due to Randomization

A is $m \times n$, B is $n \times q$

\[
O_{ij} \equiv \max_k \frac{a_{ik} b_{kj}}{p_k} - \min_k \frac{a_{ik} b_{kj}}{p_k}
\]

for $1 \leq i \leq m$ and $1 \leq j \leq q$

For every $\delta > 0$ with probability at least $1 - \delta$

\[
\frac{\|X - AB\|}{\|AB\|} \leq \frac{\|O\|}{\|AB\|} \sqrt{\frac{\ln(2mq/\delta)}{2c}}
\]

in the 1, ∞ and F norms

Bound depends on dimensions of A and B
Relative Error vs Bound

Elements of A, B iid uniform $[0, 1]$, $m = 50$, $n = 1000$, $q = 80$ uniform probabilities

Relative errors $\|X - AB\|_1/\|AB\|_1$ for every c

Bound with probability .99
Multiplying Rank One Matrices

\[A = fa^T \quad B = bd^T \quad AB = \begin{pmatrix} a^T b \end{pmatrix} fd^T \]

inner product

Random variable \(X_t = \frac{a_{kt} b_{kt}}{c_{p_{kt}}} fd^T \)

For every \(\delta > 0 \) with probability at least \(1 - \delta \)

\[
\frac{\| X - AB \|}{\| AB \|} \leq \frac{\text{osc} \left(\frac{ab}{p} \right)}{|a^T b|} \sqrt{\frac{\ln(2 mq / \delta)}{2c}}
\]

Condition

Algorithm

in the 1, \(\infty \) and \(F \) norms

Same condition number as inner product
but bound must hold for all \(mq \) elements of \(X \)
Error due to Randomization

Our bounds with probability .99

- Capture worst case error
- Informative even for small matrix dimensions
- Tight for inner products where all products are identical
- Recognize rank one matrices

How to pick good probabilities p_k:

- Minimize variance (importance sampling)

 [Drineas, Kannan & Mahoney 2006]
- Minimize $\|O\|$
Sensitivity of Randomized Inner Product

- **Exact inputs:** a, b
 Desired result: $a^T b$

- **Randomized algorithm**
 - Fix c, fix probabilities p_k
 - Output from some run:
 $$X = \sum_{t=1}^{c} \frac{a_{kt}b_{kt}}{cp_{kt}}$$

- **Perturbed inputs:** \hat{a}, \hat{b}
 - Same c, same probabilities p_k
 - Output from some run:
 $$\hat{X} = \sum_{t=1}^{c} \frac{\hat{a}_{it}\hat{b}_{it}}{cp_{it}}$$

- **What to compare?**
 - \hat{X} and $a^T b$: No info about sensitivity of algorithm
 - \hat{X} from some run, and X from another run: Too pessimistic
 - \hat{X} and X from same run
Sensitivity Bound: Numerator

- Relative perturbations
 \[\hat{a}_k = a_k (1 + \alpha_k) \quad \hat{b}_k = b_k (1 + \beta_k) \quad |\alpha_k|, |\beta_k| \leq \epsilon \]

- Outputs from same run
 \[X = \sum_{t=1}^{c} \frac{a_{kt} b_{kt}}{cp_{kt}} \quad \hat{X} = \sum_{t=1}^{c} \frac{\hat{a}_{kt} \hat{b}_{kt}}{cp_{kt}} \]

- For every \(\delta > 0 \) with probability at least \(1 - \delta \)
 \[|\hat{X} - X| \leq 3 \left[|a|^T |b| + \text{osc} \left(\frac{|ab|}{p} \right) \sqrt{\frac{\ln(2/\delta)}{2c}} \right] \epsilon \]
Sensitivity Bound

\[
|\hat{X} - X| \leq 3 \left[|a|^T |b| + \text{osc} \left(\frac{|ab|}{p} \right) \sqrt{\frac{\ln(2/\delta)}{2c}} \right] \frac{|X|}{|\epsilon|}
\]

Difficulties:
- Denominator $|X|$ unknown, can take on $O(n^c)$ different values
- Bound $|X|$ in terms of $|a^T b|$? Too pessimistic.
- Bound $|X|$ in terms of $\min_{k_1, \ldots, k_c} \left| \sum_{t=1}^c \frac{a_{k_t} b_{k_t}}{c p_{k_t}} \right|$? Too pessimistic. Too unwieldy.
Low Sensitivity

\(a_k, b_k \) iid uniform \([0, 1]\), \(n = 10^5 \), \(\epsilon = 10^{-8} \), \(c = 10^3 \)

uniform probabilities

Relative errors \(|\hat{X} - X|/|X| \) over 1000 runs

Sensitivity bound with probability .99

Bound almost constant \(\Rightarrow \) low sensitivity to perturbations
High Sensitivity

a_k, b_k iid uniform $[-.5, .5]$, $n = 10^5$, $\epsilon = 10^{-8}$, $c = 10^3$

uniform probabilities

Relative errors $|\hat{X} - X|/|X|$ over 1000 runs

Sensitivity bound with probability .99

Bound oscillates \Rightarrow high sensitivity to perturbations
Interpretation of Sensitivity Bound

Assumptions:

\(\hat{X} \) and \(X \) from same run

Same \(c \), same probabilities \(p \)

Relative perturbations \(\leq \epsilon \)

With probability at least \(1 - \delta \)

\[
\frac{|\hat{X} - X|}{|X|} \leq \frac{\text{constant}(a, b, p, c, \delta)}{|X|} \epsilon
\]

Two factors influence sensitivity:

\[
\text{constant}(a, b, p, c, \delta) = O \left(|a|^T |b| + \text{osc} \left(\frac{|ab|}{p} \right) \right)
\]

“Variance” of \(|X|\) \hspace{1cm} \(|X|\) has \(O(n^c) \) different values
Randomized algorithm for matrix multiplication from [Drineas, Kannan & Mahoney 2006]

Relative error due to randomization
- Tighter bounds, apply to all probabilities
- Predictive even for small matrix dimensions

Sensitivity of randomized inner product
- Number of different outputs is exponential: \(\mathcal{O}(n^c) \)
- Capture variation across all of these outputs