Rank-Deficient Nonlinear Least Squares Problems and Subset Selection

Ilse Ipsen

North Carolina State University
Raleigh, NC, USA

Joint work with: Tim Kelley and Scott Pope
Overview

Motivating Application

Modeling cardiovascular systems
Extract biomarkers: Nonlinear parameter estimation
Nonlinear dependencies among parameters

Computation

Solution of nonlinear least squares problem
by Levenberg-Marquardt trust region algorithm
Rank deficient Jacobians
Errors in Jacobian evaluation

How to “regularize” the Jacobian?

Truncated SVD: NO
Column subset selection: YES
Modeling Cardiovascular Systems

Goal: Identify parameters that regulate blood flow

Cardiovascular system = lumped 5-compartment model

Blood flow, volume, pressure, resistance, compliance

[Source: Pope, Olufsen, Ellwein, Novak, Kelley]
Computation

- System of 5 ODEs with $N = 16$ parameters
 \[y' = F(t, y; p) \quad y(0) = y_0 \]

 Parameter vector $p \in \mathbb{R}^N$

- Observations d_j at M time points $t_j \quad M \gg N$

- Nonlinear residual
 \[R(p) = \begin{pmatrix}
 y(t_1, p) - d_1 \\
 \vdots \\
 y(t_M, p) - d_M
 \end{pmatrix} \]

- Identify parameters p that minimize difference between measured and computed quantities
 \[\min_p R(p)^T R(p)/2 \]
Nonlinear Least Squares Problem

\[\min_p R(p)^T R(p)/2 \]

Jacobian \(J_n \equiv R'(p_n) \) at current iterate \(p_n \)

- Levenberg-Marquardt trust region algorithm

 \[p_{n+1} = p_n - \left(\nu_n I + J_n^T J_n \right)^{-1} J_n^T R(p_n) \]

- \(\nu_n = 0 \) and \(J_n \) full column rank: Gauss Newton

- Here: \(\nu_n \geq 0 \) and \(J_n \) rank deficient
Levenberg-Marquardt Algorithm

Inside a Levenberg-Marquardt Step:

While iterate has not changed

Trial step $s = - (\nu_n I + J_n^T J_n)^{-1} J_n^T R(p_n)$

Trial iterate $p_t = p_n + s$

if p_t good enough then

$p_{n+1} = p_t$, ν_{n+1} ← keep or decrease ν_n

else ν_{n+1} ← increase ν_n

Ideally:

$\nu_n \to 0$, or at least ν_n bounded

p_n converge to minimizer, or at least stationary point

But here:

Poor convergence (Levenberg-Marquardt stagnates)

Gradient at “solution” not small

Accuracy of “solution” ??
Convergence Analysis

- Near solution manifold
- Assuming exact arithmetic

Nonlinear iterations with rank deficient Jacobians:
Ben-Israel 1966, Boggs 1976, Deuflhard & Heindl 1979, Schaback 1985
Behavior of Levenberg-Marquardt Iterates

Assumptions
- Initial iterate p_0 close enough to a solution p^*
- $J(p)$ Lipschitz continuous
- $R(p^*)$ small but not necessarily zero

Then we can show
- Levenberg-Marquardt parameters ν_n remain bounded
- Iterates p_n approach solution manifold
- If p_n converge then they converge to some solution (Cauchy sequence)

Still need to show that p_n converge
Convergence of Levenberg-Marquardt Iterates

Model nonlinear dependence among parameters:

\[R(p) = \tilde{R}(B(p)) \quad B : \mathbb{R}^M \rightarrow \mathbb{R}^K \]

If \(K = N \) then Jacobian \(J \) has full column rank

Assumptions: Sufficiently close to a solution \(p^* \)
- \(\tilde{R} \) and \(B \) uniformly Lipschitz continuously differentiable
- All \(K \) singular values of \(B' \) uniformly bounded away from 0
- All \(K \) singular values of \(\tilde{R}' \) uniformly bounded away from 0
- \(\tilde{R}(b)^T \tilde{R}(b)/2 \) has unique minimizer

Then: \(p_n \) converge to a solution \(r \)-linearly
Summary: Convergence Analysis

Assumptions:
- Near solution manifold
 Initial iterate \(p_0 \) sufficiently close to a solution \(p^* \)
- Nonlinear residual \(R(p^*) \) small but not necessarily zero
- Dependence among parameters:
 \[R(p) = \tilde{R}(B(p)) \]
 \(B : \mathbb{R}^M \to \mathbb{R}^K \)
- Jacobians \(B' \) and \(\tilde{R}' \) have rank \(K \)
- All Jacobians sufficiently smooth

Then: Iterates \(p_n \) converge to some solution

But this assumes exact arithmetic!
What happens in finite precision?
Finite Precision Issues

- Computation of trial step
- Effect of errors in computed Jacobian
- Regularization of Jacobian:
 - Truncated SVD \leftrightarrow subset selection

Singular vector perturbations: Stewart 1973
Computation of Trial Step

\[p_{n+1} = p_n + s \]

- Trial step

\[s = - \left(\nu I + J^T J \right)^\dagger J^T R \]

Works for \(\nu = 0 \) and rank deficient \(J \)

- Computed as minimum norm solution to linear least squares problem

\[\min_x \| Ax - b \| \]

\[A = \begin{pmatrix} J \\ \sqrt{\nu} I \end{pmatrix}, \quad b = \begin{pmatrix} R \\ 0 \end{pmatrix} \]

Illconditioned or illposed if \(\nu \) small, \(J \) rank deficient
Full Rank Jacobian

- J has full column rank: \[s = - (\nu I + J^T J)^{-1} J^T R \]

 Condition number \[\kappa_\nu(J) := \left\| (\nu I + J^T J)^{-1} J^T \right\| \|J\| \]

- $\tilde{J} = J + E$ has full column rank, \[\|E\| \leq \epsilon \|J\| \]

 \[\tilde{s} = - \left(\nu I + \tilde{J}^T \tilde{J} \right)^{-1} \tilde{J}^T R \]

- Relative error in trial step

 \[\frac{\|\tilde{s} - s\|}{\|\tilde{s}\|} \leq \kappa_\nu(J) \left(1 + \frac{\|R\|}{\|J\| \|\tilde{s}\|} \right) \epsilon \]

 Error in J amplified by conditioning of J and nonlinear residual R
Rank Deficient Jacobian: Regularization

- Exact trial step $s = -\left(\nu I + J^T J\right)^\dagger J^T R$
- Truncate SVD of J: Truncated Jacobian J_t has singular values

 \[
 \sigma_1 \geq \cdots \geq \sigma_K > \sigma_{K+1} = \cdots = \sigma_N = 0
 \]

- "Truncated" trial step is

 \[
 s_t = -\left(\nu I + J_t^T J_t\right)^\dagger J_t^T R
 \]

- Computed as minimum norm solution of $\min_x \|A_t x - b\|$

 \[
 A_t = \begin{pmatrix}
 J_t \\
 \sqrt{\nu} I
 \end{pmatrix}, \quad b = \begin{pmatrix}
 R \\
 0
 \end{pmatrix}
 \]

Linear least squares problem still ill-conditioned or ill-posed
Truncated SVD: Errors in Jacobian

- SVD of exact Jacobian: \(J = UΣV^T \) \(\text{rank}(J) = K \)
 Nonzero singular values \(σ_1 ≥ ⋯ ≥ σ_K > 0 \)
 \[
 κ_ν(J) := σ_1 \max_{σ_K ≤ σ ≤ σ_1} \frac{σ}{ν + σ^2}
 \]

- SVD of perturbed Jacobian: \(J + E = \tilde{U}\tilde{Σ}\tilde{V}^T \), \(\|E\|_F ≤ \epsilon \|J\| \)
 \(\tilde{U}, \tilde{V} \) rotations of \(U, V \) by angles \(≤ \theta \)

- \(\tilde{J}_t \) truncated SVD of \(J + E \) \(\text{rank}(\tilde{J}_t) = K \)

- Trial step of truncated perturbed Jacobian
 \[
 \tilde{s}_t = - \left(νI + \tilde{J}_t^T\tilde{J}_t \right)^{\dagger} \tilde{J}_t^T R
 \]
Relative Error for Truncated SVD

For ϵ sufficiently small

$$\frac{\|\tilde{s}_t - s\|}{\|\tilde{s}_t\|} \leq \kappa_\nu(J) \left[1 + (1 + 2\|J\|\tan \theta) \frac{\|R\|}{\|J\|\|\tilde{s}_t\|} \right] \epsilon + O(\epsilon^2)$$

- $\tan \theta$: Accuracy of singular vectors of truncated Jacobian \tilde{J}_t
- Error in J_t amplified by
 - Conditioning of J
 - Inaccuracy of singular vectors
 - Nonlinear residual R

- Trial step from truncated SVD not accurate if
 - J close to matrix of rank $K - 1$: $\kappa_\nu(J) \gg 1$
 - Singular vectors have low accuracy: $\tan \theta \gg 0$
 - Nonlinear residual R large
Choose K “very” linearly independent columns J_1 from J

\[J = \begin{pmatrix} J_1 & J_2 \end{pmatrix} \]

Trial step

\[\hat{s} = -\left(\nu I + J_1^T J_1 \right)^{-1} J_1^T R \]

Computed as solution of $\min_x \| A_1 x - b \|$

\[A_1 = \begin{pmatrix} J_1 \\ \sqrt{\nu} I \end{pmatrix}, \quad b = \begin{pmatrix} R \\ 0 \end{pmatrix} \]

Linear least squares problem now well-conditioned
Subset Selection: Errors in Jacobian

- J_1 selected by strong RRQR [Gu & Eisenstat 1996]

$$\frac{\sigma_j}{\sqrt{1+K(N-K)}} \leq \sigma_j(J_1) \leq \sigma_j \quad 1 \leq j \leq K$$

Singular values of J_1 close to largest singular values of J

- Perturbed Jacobian $\tilde{J} = J + E$

$$\text{rank}(J + E) \geq K, \quad \|E\| \leq \epsilon \|J\|$$

- Select same columns for \tilde{J}_1 and J_1: $(\tilde{J}_1 \quad \tilde{J}_2)$

$$\tilde{s} = - \left(\nu I + \tilde{J}_1^T \tilde{J}_1 \right)^{-1} \tilde{J}_1^T R$$
Subset Selection: Relative Error

Condition number

\[\tilde{\kappa}_\nu(J_1) = \sigma_1 \max_{\tilde{\sigma}_K \leq \sigma \leq \sigma_1} \frac{\sigma}{\nu + \sigma^2} \quad \tilde{\sigma}_K = \frac{\sigma_K}{\sqrt{1 + K(N - K)}} \]

Relative error in subset selection trial step

\[\frac{\|\tilde{s} - \hat{s}\|}{\|	ilde{s}\|} \leq \tilde{\kappa}_\nu(J_1) \left(1 + \frac{\|R\|}{\|J\| \|	ilde{s}\|} \right) \epsilon \]

Error in \(J \) amplified by conditioning of \(J_1 \) and nonlinear residual \(R \)

Same as full rank bound applied to \(J_1 \)
Numerical Experiments

Goal: Design simplest possible setting to reproduce failures from truncated SVD observed in cardiovascular model
Numerical Experiments

- Driven harmonic oscillator
 \[
 (1 + 10^{-3} \delta)y'' + (c_1 + c_2)y' + ky = 2\sin(5t)
 \]
 \[y(0) = y_0, \quad y'(0) = y'_0\]

- 4 parameters \(p = (\delta \quad c_1 \quad c_2 \quad k)^T \)

- Numerical solution \(\tilde{y}(t_j) \) from Matlab ode15s

- Nonlinear residual
 \[
 R(p) = \begin{pmatrix}
 \tilde{y}(t_1) - d_1 \\
 \vdots \\
 \tilde{y}(t_M) - d_M
 \end{pmatrix}
 \]

- Estimate \(p \) by solving nonlinear least squares problem
 \[
 \min_p R(p)^T R(p)/2
 \]
Numerical Experiments: Assumptions

\[(1 + 10^{-3} \delta) y'' + (c_1 + c_2) y' + k y = 2 \sin (5t) \]

- Highly accurate Jacobians:
 Compute columns of \(J \) from sensitivities \(\partial y / \partial p \)

- Zero residual:
 Data \(d \) from exact parameters \(p^* = (1.23 \ 1 \ 0 \ 1)^T \)

- Initial guess \(p_0 = (0 \ 1 \ 1 \ .3)^T \)

- Singular values of initial Jacobian:
 \[40.1 \ 12.9 \ 7.4 \cdot 10^{-4} \ 6.21 \cdot 10^{-16} \]

- One zero singular value by design:
 \(\frac{\partial R}{\partial c_1} = \frac{\partial R}{\partial c_2} \)
 Need to recover \(c_1 + c_2 = 1 \)
Numerical Experiments: Zero Residual

Assumptions for subset selection:
- Rank $K = 3$ of Jacobian is known
- Subset selection applied only to initial Jacobian
- All Levenberg-Marquardt iterations work with same K columns
- Parameters corresponding to $N - K = 1$ non-selected columns set to nominal values
- Exact parameters $p^* = (1.23 \ 1 \ 0 \ 1)^T$

- Truncated SVD: $p = (1.22 \ .5 \ .5 \ 1)^T$
- Subset selection: $p = (1.23 \ .5 \ .5 \ 1)^T$

 A little more accurate
Subsets selection converges faster and slightly more accurate than truncated SVD
Numerical Experiments: Non-Zero Residual

\[(1 + 10^{-3} \delta)y'' + (c_1 + c_2)y' + k_0 y = 2 \sin(5t)\]

- Non-zero residual
 Componentwise relative perturbation of data \(d\) by \(10^{-4}\)
- Singular values of Jacobian have not changed:
 \[40.1 \quad 12.9 \quad 7.4 \cdot 10^{-4} \quad 6.21 \cdot 10^{-16}\]
- Exact parameters \(p^* = (1.23 \quad 1 \quad 0 \quad 1)^T\)

- Truncated SVD: \(p = (0.09 \quad 0.5 \quad 0.5 \quad 0.998)^T\)
 \(\delta\) completely wrong
- Subset selection: \(p = (1.28 \quad 0 \quad 1 \quad 1)^T\)
 Much more accurate
Truncated SVD ↔ Subset Selection

What is really going on?
General Least Squares Problems

\[\min_x \|Ax - b\| \quad A \text{ is } M \times N, \quad M \geq N \]

Singular values \(\sigma_1 \geq \cdots \geq \sigma_K \gg \sigma_{K+1} \geq \cdots \geq \sigma_N > 0 \)

Least squares problem with illconditioned matrix

- **Truncated SVD**

 Singular values \(\sigma_1 \geq \cdots \geq \sigma_K \gg \sigma_{K+1} = \cdots = \sigma_N = 0 \)

 Least squares problem now ill-posed

- **Subset Selection:** \(K \) columns of \(A \) selected by strong RRQR

 Singular values \(\sigma_1 \geq \cdots \geq \sigma_K / \sqrt{1+K(N-k)} \gg 0 \)

 Least squares problem with wellconditioned matrix
The Problem with Truncated SVD

- \(\min_x ||Ax - b|| \)

 \(A \) has singular values \(\sigma_1 \geq \cdots \geq \sigma_k \geq \cdots \geq \sigma_r > 0 \)

 \(s = A^\dagger b \) is minimal norm solution

- Truncated SVD: \(\min_x ||A_t x - b|| \)

 \(A_t \) has singular values \(\sigma_1 \geq \cdots \geq \sigma_k \)

 \(s_t = A_t^\dagger b \) is minimal norm solution, residual \(r_t = b - A s_t \)

- Relative error

 \[
 \frac{||s_t - s||}{||s_t||} \leq \frac{\sigma_1}{\sigma_r} \frac{||r_t||}{||A|| ||s_t||}
 \]

Small residual does not imply that \(s_t \) accurate
Bound independent of how many singular values truncated
Summary

- Parameter estimation with **nonlinear dependences**
- Expressed as nonlinear least squares problem
- Solved by Levenberg-Marquardt trust region algorithm
- **Rank deficient Jacobians**
- Errors in Jacobian evaluation, non-zero residuals

- **How to regularize Jacobian:**
 - *Truncated SVD:* NO
 - *Subset selection:* Yes