Definition: In each of the problems we use the following:

1. \(f(E) = \{ f(x) \mid x \in E \} \) and
2. \(f^{-1}(F) = \{ x \mid f(x) \in F \} \)

where \(E \subseteq X \) and \(F \subseteq Y \).

1. Suppose \(f : X \to Y \) and that \(A \subseteq X \).
 To show that \(A \subseteq f^{-1}(f(A)) \), assume that \(x \in A \). By 1 in the above definition, this means that \(f(x) \in f(A) \). However by 2 above, this means that \(x \in f^{-1}(f(A)) \). This concludes the inclusion portion of the problem.

 Now suppose that the two are equal for all \(A \subseteq X \), we will show that \(f \) must be injective. Suppose otherwise and that \(a, b \in X \), with \(a \neq b \), and \(f(a) = f(b) \). Let \(A = \{ a \} \). In this case \(f(A) = \{ f(a) \} \), and \(f^{-1}(f(A)) = \{ a, b \} \neq A \). This contradiction implies that \(f \) must be one-to-one.

 So suppose that \(f \) is one-to-one. We will show that the two sets are equal. We need only show that \(f^{-1}(f(A)) \subseteq A \). So let \(x \in f^{-1}(f(A)) \). Again using part 2 of the above definition, \(x \in f^{-1}(f(A)) \) implies that \(f(x) \in f(A) \). If this is true \(f(x) = f(y) \) for some \(y \in A \). Since \(f \) is one-to-one, \(x = y \in A \), and we are done.

2. For this problem we must start by proving \(f(f^{-1}(B)) \subseteq B \) if \(B \subseteq Y \). To this end let \(y \in f(f^{-1}(B)) \). This means that there is an \(x \in f^{-1}(B) \) so that \(f(x) = y \). But by the definition part 2, \(y = f(x) \in B \).

 As before it is easy to show that if \(f(f^{-1}(B)) = B \), for all \(B \subseteq Y \), then \(f \) must be onto. Suppose \(f \) is not onto. Then there is a \(y \in Y \) which is not the image of any \(x \) in \(X \). For this \(y \) let \(B = \{ y \} \). Since nothing maps onto \(y \), \(f^{-1}(B) = \emptyset \). Thus \(f(f^{-1}(B)) = \emptyset \neq \{ y \} = B \).

 So suppose that \(f \) is onto (surjective). Let \(y \in B \). Since \(f \) is onto, there is an \(x \in X \) so that \(f(x) = y \). In other words, an \(x \) so that \(x \in f^{-1}(\{ y \}) \subseteq f^{-1}(B) \). This means that \(y = f(x) \in f(f^{-1}(B)) \). Hence \(B \subseteq f(f^{-1}(B)) \).

The next two exercises are very similar to these two, except perhaps easier.