Summary of entropy calculations

In the last lecture we derived formula for the calculation of the entropy change as a function of temperature and volume changes. These are summarized in the table below.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant temperature</td>
<td>$\Delta S = nR \ln \left(\frac{V_2}{V_1} \right)$</td>
</tr>
<tr>
<td>Constant volume</td>
<td>$\Delta S = nC_v \ln \left(\frac{T_2}{T_1} \right)$</td>
</tr>
<tr>
<td>Constant pressure</td>
<td>$\Delta S = nC_p \ln \left(\frac{T_2}{T_1} \right)$</td>
</tr>
</tbody>
</table>

Sometimes we only have pressure information and the entropy change can be rewritten as follows.

$$P_1V_1 = P_2V_2 \Rightarrow \frac{P_1}{P_2} = \frac{V_2}{V_1}$$

$$\Delta S = nR \ln \left(\frac{V_2}{V_1} \right) = nR \ln \left(\frac{P_1}{P_2} \right)$$

Isothermal compression

Calculate the entropy for an irreversible compression of oxygen gas. The initial pressure of the gas is 1 bar in a volume of 100 L. The final pressure of the of the gas is 10 bar and the temperature is 400 K.

Solution: Note that you need to obtain the number of moles. The problem does not ask you for a molar entropy.

Write down the expression for the entropy:

$$\Delta S = nR \ln \left(\frac{V_2}{V_1} \right) = nR \ln \left(\frac{P_1}{P_2} \right)$$

We need either the ratio of volumes or the ratio of pressures. We are given the pressures so we can use those. $P_2/P_1 = 10$ bar/ 1 bar = 10.

We obtain the number of moles using the ideal gas law:

$$n = \frac{P_1V_1}{RT} = \frac{(10^5 \text{ Pa})(0.1 \text{ m}^3)}{(8.31 \text{ J/mol-K})(400 \text{ K})} \left(\frac{1 \text{ bar}}{100 \text{ L}} \right) \frac{0.0831 \text{ L-bar/mol-K}}{400 \text{ K}} = 3.00 \text{ moles}$$

Now we can substitute into the entropy expression:

$$\Delta S = nR \ln \left(\frac{P_1}{P_2} \right) = (3.0 \text{ mol})(8.31 \text{ J/mol-K}) \ln (10) = 249 \text{ J/K}$$

Entropy of mixing

When two substances can mix there is a spontaneous tendency for this occur. We quantify this using the entropy state function. If we consider two containers separated by a stopcock. If N_2 gas is in one and Br_2 gas is in the other we know from experience that the gases will mix once the stopcock is opened.

For each gas we can describe the mixing as a volume change. The N_2 gas is originally on the right side contained in volume V at pressure P. After opening the stopcock, the available volume is $2V$ and the partial pressure of $N_2 = x_1P$. The same is true for Br_2. Its initial pressure is P_2 and final pressure is $P_2 = x_2P$. We treat the entropy as the sum of two expansions (i.e. an expansion for each gas).

$$\Delta_{mix} S = \Delta_{exp} S_1 + \Delta_{exp} S_2$$

$$\Delta_{mix} S = -n_1R \ln \left(\frac{P_1}{P_2} \right) - n_2R \ln \left(\frac{P_1}{P_2} \right)$$

$$\Delta_{mix} S = -n_1R \ln (x_1) - n_2R \ln (x_2)$$

$$\Delta_{mix} S = -nR(x_1 \ln x_1 + x_2 \ln x_2)$$

Note that the mole fraction applies to the final composition.
Entropy of phase transition

The entropy of phase transition can be calculated using the enthalpy and temperature of the transition.

\[\Delta_{\text{vap}} S = \frac{q_{\text{vap}}}{T_{\text{vap}}} = \frac{\Delta_{\text{vap}} H}{T_{\text{vap}}} \]

Example, using the data in the Table calculate the entropy of vaporization for the following compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\Delta_{\text{vap}} H)</th>
<th>(\Delta_{\text{vap}} S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>87.7</td>
<td>5.1</td>
</tr>
<tr>
<td>H2S</td>
<td>87.7</td>
<td>5.1</td>
</tr>
<tr>
<td>CH4</td>
<td>73.2</td>
<td>4.0</td>
</tr>
<tr>
<td>C2H6</td>
<td>79.6</td>
<td>4.8</td>
</tr>
<tr>
<td>C6H6</td>
<td>87.2</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Solution: Use the following relation

\[\Delta_{\text{vap}} S = \frac{\Delta_{\text{vap}} H}{T_{\text{vap}}} \]

Conformational entropy

The entropy of a polymer or a protein depends on the number of possible conformations. This concept was realized first more than 100 years ago by Boltzmann. The entropy is proportional to the natural logarithm of the number of possible conformations, \(W \).

\[S = R \ln W \]

For a polymer \(W = M^N \) where \(M \) is the number of possible conformations per monomer and \(N \) is the number of monomers. For a typical polypeptide chain in the unfolded state \(M \) could be a number like 6 where the conformations include different \(\phi, \psi \) angles and side chain angles. On the other hand, when the protein is folded the conformational entropy is reduced to \(W = 1 \) in the theoretical limit of a uniquely folded structure. Thus, we can use statistical considerations to estimate the entropy barrier to protein folding.

Multinomial distribution

The total number of ways that a group of \(N \) objects can be arranged in \(M \) different categories is \(M^N \). The multinomial coefficient applies to a situation where there are more than two groups. In general, if there are \(M \) different groups that we can place \(N \) objects in we have as the total number of ways

\[W = \frac{N!}{\prod n_m!} \]

where \(\Pi \) is the product operator indicating that there are \(M \) terms multiplied together in the denominator. The values of the \(n_m \) are the numbers of objects in each of the groups. Clearly, the \(n_m \) must sum up to the total number of objects.

Permutation of Letters

We have already seen that the permutations of the indices \(i, j, k \), etc. gives rise to \(N! \) different combinations. The permutation of indices in the sum over Boltzmann factors lead to the factor of \(N! \) in the partition function \(Q = q^N/N! \) for indistinguishable particles. In this application we are assuming that all of the indices are unique and therefore the number of ways of arranging them is given by

\[W = \frac{N!}{n_1! n_2! \ldots n_m!} \]

i.e. there is only one index in each group.

Suppose we asked how many ways there are of arranging the letters in the word MINIMUM. There are three Ms and two Is with a total of seven letters. In this case then there are four groups, the group of M, N, I, and U. The total number of ways is

\[W = \frac{7!}{3!2!1!1!} = \frac{5040}{2 \times 2 \times 1 \times 1} = 420 \]

Application to a game of chance

This is discussion is based on a game called YAHTZEE. On each turn you role five dice. You obtain points based on the configuration of the dice. The following point scheme is made in the instructions.

50 = all five dice have the same number (YAHTZEE)
30 = full house (two of and kind with three of kind)
40 = long straight (five sequential numbers)
12 = three of a kind (with any two not paired)
We define a configuration as \([1,2,3,4,5,6] \) where \([1]\) is number of ones etc. rolled on a particular cast of the dice. Consider how many ways there are to get a YAHTZEE of all ones. In this case each of the five die must have the same number. The configuration is \([5,0,0,0,0,0] \) and the number of ways is given by \(5/5/5/5/5/0/0! = 1 \).
Application to a game of chance

It is obvious that there is only one way to get all ones. But what about a full house? (three of one kind and two of another) We must be specific since there are a number of full houses possible (how many?). Let us take two twos and three sixes. The configuration is \(\{0,2,0,0,0,3\}\) and the number of ways this can be achieved is \(5!/0!2!0!0!0!3! = 120/(2x6) = 10\).

There are two possible long straights. The configuration is \(\{1,1,1,1,1,0\}\) and the number of ways this can be achieved is \(5!/1!1!1!1!0! = 120/5 = 24\).

The overall probability of obtaining any configuration is given by \(W\) for that configuration compared to the total number of configurations \(M^N\). For YAHTZEE is \(6^5 = 7776\). Therefore the Probability of getting a long straight is \(2*24/7776 = 0.006\).

Problem solving

We can identify the following main types of problems that involve entropy change:

- Isothermal expansion/compression (reversible/irreversible)
- Temperature change
- Equilibration
- Mixing
- Phase Transition
- Statistical or Conformational Entropy
- Adiabatic (trick question) if \(q = 0\) then \(\Delta S = 0\).

Whenever you are solving an entropy problem remember to consider both system and surroundings. The system is always calculated along a reversible path.

Equilibration

We have seen a simple example where there are two metal blocks, both made of the same material. However, this need not be the case. For any arbitrary materials 1 and 2 in contact we need to know the initial temperatures and heat capacities to calculate the final temperature.

\[q_i = -q_o \]
\[C_{p1}(T_i - T_w) = -C_{p2}(T_i - T_w) \]

Now we solve for the equilibrium temperature \(T_{eq}\).

\[C_{p1}T_i - C_{p1}T_w = -C_{p2}T_i + C_{p2}T_w \]
\[C_{p1}T_i + C_{p2}T_i = (C_{p1} + C_{p2})T_{eq} \]
\[T_{eq} = \frac{C_{p1}T_i + C_{p2}T_i}{C_{p1} + C_{p2}} \]

Equilibration: Calculating the entropy

Once you have obtained the equilibrium temperature, the entropy is easily calculated from:

\[\Delta S_i = nC_{p1}\ln\left(\frac{T_{eq}}{T_i}\right), \Delta S_2 = nC_{p2}\ln\left(\frac{T_{eq}}{T_2}\right) \]

In such problems, you are assuming that the two objects in thermal contact are a closed system. The overall entropy for heat flow should be positive since heat flow from a hotter to a colder body is a spontaneous process.

Example: The coffee cup problem. A hiker uses an aluminum coffee cup. If the mass of the cup is 4 grams and the ambient temperature (i.e. the cup’s temperature) is -10 °C and the hiker pours 50 ml. of coffee with a temperature of 90 °C into the cup:

A. Calculate the equilibrium temperature.
B. Calculate the entropy change.

Gas exchange in a green leaf

The cells of the spongy layer are irregular in shape and loosely packed. Their main function seems to be the temporary storage of sugars and amino acids synthesized in the palisade layer. They also aid in the exchange of gases between the leaf and the environment. During the day, these cells give off oxygen and water vapor to the air spaces that surround them. They also pick up carbon dioxide from the air spaces. The air spaces are interconnected and open to the outside through pores called stomata (singular; stoma).

Entropy O₂ mixing in a the stomata of a leaf

During photosynthesis O₂ is produced in the thylakoid membrane of green leaves. The gas meets the atmosphere in the stomata of the leaf. Assuming that the following mole fractions exist calculate the molar entropy of mixing.

Inside \(x_{O2_in} = 0.5\) and \(x_{N2_in} = 0.5\)

Outside \(x_{O2_out} = 0.2\) and \(x_{N2_out} = 0.8\)

Assume that the stomata closes with an equal volume of outside air and inside gas present in an enclosed space.

Solution: Assume that the initial state is premixed gas both inside and outside. Call oxygen compound 1 and nitrogen compound 2. The final composition is:

\[x_1 = (x_{O2_in} + x_{O2_out})/2 = (0.5 + 0.2)/2 = 0.35 \]
\[x_2 = (x_{N2_in} + x_{N2_out})/2 = (0.5 + 0.8)/2 = 0.65 \]
Entropy O₂ mixing in a the stomata of a leaf

Write down the total entropy change as products (final mixed composition) minus reactants (premixed air from inside and outside). There is an entropy of mixing of each of the two "reactants" that must be subtracted from the entropy of the final mix. Note that there is half as much of each of the reactant gases as the product reactant gases as the product.

\[\Delta S_{\text{total}} = \Delta S_{\text{final mix}} - \Delta S_{\text{mix in}} - \Delta S_{\text{mix out}} \]

Since the problem asks for the molar entropy we really need \(\Delta S_{\text{final mix}}/n \) so we can write the formula as:

\[\Delta S_{\text{total}} = -R \left(x_1 \ln x_1 + x_2 \ln x_2 \right) + \frac{R}{2} \left(x_1 \ln x_1 + x_2 \ln x_2 \right) \]

Phase Transition

Compare the entropy of sublimation of water to the entropy of vaporization at 0 °C. Which is larger? Why?

Solution: The entropy of a phase transition is given by:

\[\Delta S_{\text{phase}} = \frac{\Delta H_{\text{phase}}}{T_{\text{phase}}} \]

From the information in Atkins (page 61) we find that \(\Delta_{\text{vap}} H = 45.07 \text{ kJ/mol} \) and \(\Delta_{\text{sub}} H = 51.08 \text{ kJ/mol} \). Using these values and the temperature of 273 K we find.

\[\Delta S_{\text{vap}} = \frac{45070 \text{ J/mol}}{273 \text{ K}} = 165.1 \text{ J/mol•K} \]
\[\Delta S_{\text{sub}} = \frac{51080 \text{ J/mol}}{273 \text{ K}} = 187.1 \text{ J/mol•K} \]

Conformational entropy of a protein

Estimate the conformational entropy of myoglobin. Myoglobin has 150 residues with 6 possible conformations per residue. Assume there is a unique conformation for the folded structure.

Solution: The definition \(S = R \ln W \) is known as the statistical entropy. \(R \) is the gas constant and \(W \) is the number of possible conformations for a structure and \(W = M^6 \).

For the unfolded protein: \(W = 6^{150} \) and \(S = 150R \ln(6) \).

For the folded protein: \(W = 1 \) and \(S = 0 \).

There conformational entropy is \(\Delta_{\text{fold}} S - \Delta_{\text{unfold}} S \) and is therefore 2233 J/mol or 2.2 kJ/mol.

The Levinthal Paradox

The Levinthal paradox assumes that all of the possible conformations will be sampled with equal probability until the proper one (N = native) is found. Thus, the funnel surface looks like a hole in a golf course. The paradox states that if a protein samples all \(6^M \) conformations it will take a time longer than the age of the universe to find the native fold (N) for a polypeptide where \(M = 100 \) and if it takes \(10^{31} \) seconds to sample each possible conformation!

The Pathway Model

Imagine that the a unique pathway winds through the surface to the hole. The path starts at A and the folding goes through a unique and well-defined set of conformational changes. Here the entropy must decrease rapidly since the number of degrees of freedom in the folding pathway is quite small compared to \(6^M \). On this diagram the conformational entropy is given by the width of the funnel and the relative by the height relative to the bottom (folded state). The vertical axis is energy NOT free energy.
Evidence for folding pathways
One piece of evidence for folding pathways comes from trapping disulfide intermediates. This method was pioneered by Creighton using BPTI (and has only been used on other proteins).

Beyond pathways
Kim et al. showed that some of the previous data and interpretations were wrong. The major 2-DS species contains the two native DS's, 30-51 and 5-55. The third disulfide is formed quite slowly because it is quite buried. It is possible to isolate a stable species with only the first two disulfides formed and the third remaining in the reduced form. Studies with a mutant in which the third DS was replaced by 2 Ala, and which folded at a similar rate to the wild type, support the idea that the trapped disulfide species have partial native-like structure. These observations and others like it can be used to the idea of a pathway into question.

The Folding Funnel
The folding funnel shown here represents the change in energy for a large number of folding paths that lead to the native configuration. There are no energy barriers. This implies that all paths have an equal probability leading to the folded state. The funnel shown here has no energy barriers and all paths lead directly to the native state. Thus, this funnel is consistent with two state folding behavior.

Barriers and misfolding
The energy surface does not have to be a smooth trajectory. There can be barriers that will trap intermediate states. These states may then be observed to determine aspects of the folding trajectory. Whenever an intermediate is observed there will be a question as to whether this is part of a pathway or whether a funnel description is more applicable. Note that the funnel provides the possibility for misfolding. This will typically result in multiple minima in the energy landscape.