Applied Geoscience Data Analysis Using Matlab

17 Sept 2013
(Lecture 8)

Hypothesis Testing
KS goodness-of-fit test, t-test, f-test
bootstrap approach

Sections 3.6-3.8 Trauth

Steps

1. Apply some formula to the data to a compute a statistic that informs us about the null hypothesis.

2. Find where that value falls in a probability distribution computed on the basis of the “null hypothesis.”

3. If it falls in an unlikely spot (on distribution tail), conclude that we have disproven the null hypothesis.

Hypothesis Testing

Goals

Generate a statement of comparison between a sample and a known population or between two samples.

This statement, the null hypothesis H_0, is usually formulated so that it will be **rejected** (“proven” false).

— **Examples of a null hypothesis**: The chromium content of sample A is the same at that from sample B.
$H_0 : Cr_A = Cr_B$

Hypothesis Testing

Example – Chi-squared Goodness-of-Fit

Steps

1. Apply some formula to the data to a compute a statistic that informs us about the null hypothesis.

The value of the test-statistic is

$$X^2 = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i},$$

where

- X^2 is the test statistic that asymptotically approaches a χ^2 distribution.
- O_i is an observed frequency.
- E_i is an expected (theoretical) frequency, asserted by the null hypothesis;
- n is the number of possible outcomes of each event.
2. Find where that value falls in a probability distribution computed on the basis of the “null hypothesis.”

3. If it falls in an unlikely spot (on distribution tail), conclude that we have disproven the null hypothesis with a given level of confidence.

K-S (Kolmogorov-Smirnov) Goodness-of-Fit Test
- Used for comparing two distributions, via empirical CDF’s
- H₀ is that they are the same distribution
- Non-parametric Test (as was the chi-squared)
- Does not need to be performed on binned data

The test statistic is:
\[\text{max}[F_1(x) - F_2(x)] \]

\(F_1(x) \) is the CDF of x₁
\(F_2(x) \) is the CDF of x₂

Example from last lecture organicmatter_one.txt
\[\text{chi2}=\text{sum}((\text{CNexp-CNobs}).^2./\text{CNexp}) = 8.95 \]

Critical Value
\[\text{chi2inv}(0.95,5) = 11.07; \quad 95 \% \text{ confidence} \]

Cannot Reject

Critical Values for KS-test

Let \(n \) be the sample size. Then the following critical values are used for the test:

For significance level \(\alpha = 0.10 \) (where \(\alpha = 1 - p \); or the probability or being true is less than 0.10)
a critical value of \(1.22/V(n) \) is used.

For significance level \(\alpha = 0.05 \),
a critical value of \(1.36/V(n) \) is used.

For significance level \(\alpha = 0.01 \),
a critical value of \(1.63/V(n) \) is used.
The example of organic matter....
OGM=load('organicmatter_one.txt');
sOGM=sort(OGM);
obsCDF=(1:length(sOGM))./length(sOGM);
stairs(sOGM, obsCDF,'g')

Expected value is evaluated at each sorted OMG data value
expCDF=normcdf(sOGM,mean(OGM),std(OGM));
stairs(sOGM,expCDF,'r','LineWidth',2);

DIF=abs(expCDF-obsCDF');
maxDIF=max(DIF); % 0.0757
i=find(DIF==max(DIF))
plot(sOGM(i),0,'x')
kscrit=1.36/
sqrt(length(sOGM)) %0.1756

Parametric Hypothesis Tests
- Assume Certain Distribution (e.g., normal)
- Can be sensitive, provided assumptions are met.

Today we will look at two common tests that assume normally distributed data:

t-test
- test if the mean of a sample is different than that of a populations with known mean

F-test
- test if the variances of two samples are different
T-test: Test if a sample is derived from a population with a given mean and unknown variance

- x-bar = mean of our sample
- SE = standard error of our sample
- μ = mean of population we're testing against

- Assumes similar variances
- Normal distributions

$$t = \frac{x - \mu}{SE}$$

$SE = \frac{\sigma}{\sqrt{n}}$

Reject the null hypothesis (means of the two are equal) if $t > t_c$.

$tinv(P, df) \ % \ find \ critical \ value$

EXAMPLE: The worldwide population of *Composita* (a type of shell) has mean size of **14.2 mm**.

We collect a sample of 6 shells from a population: $x = [33.9625 \ 31.3565 \ 23.5298 \ 33.5815 \ 31.8559 \ 23.3230]$.

Question: Is it likely that the population that the samples came from is the same as the other (global) population or have we discovered a new population of Composita?

Formulate the null hypothesis: H_0

- $\mu_{our \ population} = \mu_{worldwide}$

$SE = \text{std}(x)/\sqrt{n} = 1.99; \ \text{mean}(x) = 29.60$

$$t = \frac{x - \mu}{SE} = \frac{29.6 - 14.2}{1.99} = 7.7387$$

If t is large enough then we can reject the NULL hypothesis

$\text{tinv(0.95,5) \ % \ find \ critical \ value \ at \ 95\% \ conf. = 2.0150}$

$t > t_{\text{critical}}$

To specific level of significance:
- Need calculated t and d.f. to look up critical value.
- Since the mean is used in calculating the standard error, the number degrees is n-1 = 5

$tinv(0.95,5) \ % \ find \ critical \ value \ at \ 95\% \ conf. = 2.0150$

Can reject null hypothesis at 99.95% conf. level OR 0.005 significance

<table>
<thead>
<tr>
<th>SIGNIFICANCE LEVELS (α)</th>
<th>df</th>
<th>0.01</th>
<th>0.025</th>
<th>0.05</th>
<th>0.075</th>
<th>0.10</th>
<th>0.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.324920</td>
<td>1.000000</td>
<td>3.077684</td>
<td>6.313745</td>
<td>12.70620</td>
<td>31.8205</td>
<td>63.65674</td>
</tr>
<tr>
<td>2</td>
<td>0.288675</td>
<td>0.816497</td>
<td>1.684890</td>
<td>2.919200</td>
<td>4.30265</td>
<td>6.96456</td>
<td>9.92445</td>
</tr>
<tr>
<td>3</td>
<td>0.276671</td>
<td>0.764802</td>
<td>1.637514</td>
<td>2.575826</td>
<td>3.84145</td>
<td>5.84107</td>
<td>8.84145</td>
</tr>
<tr>
<td>4</td>
<td>0.270722</td>
<td>0.740697</td>
<td>1.533206</td>
<td>2.230882</td>
<td>3.21861</td>
<td>4.54040</td>
<td>7.37485</td>
</tr>
<tr>
<td>5</td>
<td>0.267181</td>
<td>0.726687</td>
<td>1.475884</td>
<td>2.015048</td>
<td>2.57058</td>
<td>3.84145</td>
<td>5.50188</td>
</tr>
</tbody>
</table>
\[t = \frac{\bar{X} - \mu}{s/\sqrt{n}} \]

where \(\bar{X} \) is the sample mean, \(\mu \) is the hypothesized population mean, \(s \) is the sample standard deviation, and \(n \) is the sample size. Under the null hypothesis, the test statistic will have Student's t distribution with \(n - 1 \) degrees of freedom.

\[[h,p] = ttest(\ldots) \]

returns a 100*(1 - alpha)%

confidence interval on the population mean, or on the difference of population means for a paired test.

What if:
\[x = [10.4623 \ 11.3760 \ 9.2422 \ 14.0254 \ 17.9509 \ 16.8862] \]

\[[h,p]=ttest(x,14.2) \]

H = 0 (we can NOT reject the hypothesis at the 95% confidence level... they might be from the same population)

p = 0.5725 (large probability of \(H_0 \) being true... i.e., the data are sampled from a population with mean of 14.2)

\[t = \frac{\bar{a} - \bar{b}}{\sqrt{\frac{\sum (a_i - \bar{a})^2}{n_a} + \frac{\sum (b_i - \bar{b})^2}{n_b}}} \]

The denominator makes a "pooled" estimate of the Standard Deviation.

\[d.f= n_a+n_b-2 \]

a-bar= mean(a) b-bar=mean(b)
In Matlab

h=1 reject
h=0 cannot reject

In Matlab, the `ttest2` function is used to perform a t-test of the hypothesis that two independent samples, in the vectors X and Y, come from distributions with equal means, and returns the result of the test in H. H=0 indicates that the null hypothesis ("means are equal") cannot be rejected at the 5% significance level. H=1 indicates that the null hypothesis can be rejected at the 5% level. The data are assumed to come from normal distributions with unknown, but equal, variances. X and Y can have different lengths.

\[H = \text{ttest2}(X,Y) \]

\[\{H,P\} = \text{ttest2}(X,Y) \]

\[\{H,P,CI\} = \text{ttest2}(X,Y) \]

Are these means different?

```matlab
>> mean(corg1) = 25.5816
>> mean(corg2) = 25.1507
```

Our null hypothesis is that they are not different.

```matlab
[h,p,ci] = ttest2(corg1,corg2,0.05)
```

- \(h = 0 \) (can NOT reject the null hypothesis that samples come from a population with the same mean at 95% confidence level)
- \(p = 0.0745 \) (7.45% chance Ho is true)
- \(\text{ci} = -0.0433 \text{ to } 0.9053 \) (confidence interval for the true difference of population means.)

Organic matter example...

```matlab
load('organicmatter_two.mat');

[n1,x1] = hist(corg1);
[n2,x2] = hist(corg2);

h1 = bar(x1,n1);
hold on
h2 = bar(x2,n2);

set(h1,'FaceColor','none','EdgeColor','r')
set(h2,'FaceColor','none','EdgeColor','b')
```

New dataset

```matlab
load('organicmatter_three.mat');
```
% two means are 25.4012 24.1963

\[[H,P,ci] = \text{ttest2(corg1,corg2,0.05)} = \]
\[H = 1 \text{ (reject the Null hypothesis that they are equal with 95% confidence)} \]
\[P = 6.1138\times10^{-6} \]
\[ci = [0.0711, 1.7086] \text{ (95% confidence interval for the true difference of population means.)} \]

% test

\[[H,P,ci] = \text{ttest2(corg1,corg2,0.000005)} \]
\[H = 0 \text{ (can NOT reject at this level)} \]

\[
\hat{F} = \frac{S_a^2}{S_b^2} \quad \text{Assuming var(a) > var(b)}
\]
\[\text{d.f.}_a = \text{length(a)-1} \]
\[\text{d.f.}_b = \text{length(b)-1} \]

Again, if F is bigger than some critical value (that depends on d.f) we reject the null hypothesis that the two variances are equal.

>> [H,P,CI] = \text{vartest2(corg1,corg2)}

\[H = 0 \text{ (can NOT reject the null hypothesis that the variances are equal at 95% confidence level).} \]
\[P = 0.7787 \text{ Probability that } H_0 \text{ is true} \]
\[CI = [0.6429, 1.8018] \text{ (95% confidence interval for the true ratio var(X)/var(Y).)} \]
Available Hypothesis Tests

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2sample</td>
<td>Mean equality test. Tests if two independent samples come from the same distribution, against the alternative that they come from different distributions.</td>
</tr>
<tr>
<td>chisq</td>
<td>Chi-square goodness-of-fit test. Tests if a sample comes from a specified distribution, against the alternative that it does not come from that distribution.</td>
</tr>
<tr>
<td>ranksum</td>
<td>Wilcoxon rank sum test. Tests if the null distribution of a linear regression is independent, against the alternative that there is auto-correlation among them.</td>
</tr>
<tr>
<td>jarque</td>
<td>Jarque-Bera test. Tests if a sample comes from a normal distribution with unknown mean and variance, against the alternative that it does not come from a normal distribution.</td>
</tr>
<tr>
<td>linreg</td>
<td>Linear regression test. Tests if the residuals from a linear regression are independent, against the alternative that there is auto-correlation among them.</td>
</tr>
<tr>
<td>scores</td>
<td>One-sample Kolmogorov-Smirnov test. Tests if a sample comes from a continuous distribution with specified parameters, against the alternative that it does not come from that distribution.</td>
</tr>
<tr>
<td>smear</td>
<td>Two-sample Kolmogorov-Smirnov test. Tests if two samples come from the same continuous distributions, against the alternative that they do not come from the same distribution.</td>
</tr>
<tr>
<td>ttest</td>
<td>T-test. Tests if a sample comes from a continuous distribution with unknown variance and a specified mean, against the alternative that it does not have that mean.</td>
</tr>
<tr>
<td>ttest2</td>
<td>Two-sample t-test. Tests if two independent samples come from normal distributions with unknown but equal (or, optionally, unequal) variances and the same mean, against the alternative that the means are unequal.</td>
</tr>
<tr>
<td>varshared</td>
<td>One-sample chi-square variance test. Tests if a sample comes from a normal distribution with specified variance, against the alternative that it comes from a normal distribution with a different variance.</td>
</tr>
<tr>
<td>varshared2</td>
<td>Two-sample F-test for equal variances. Tests if two independent samples come from normal distributions with the same variance, against the alternative that they come from normal distributions with different variances.</td>
</tr>
<tr>
<td>varshunt</td>
<td>Bartlett's multiple sample test for equal variances. Tests if multiple samples come from normal distributions with the same variance, against the alternative that they come from normal distributions with different variances.</td>
</tr>
<tr>
<td>ztest</td>
<td>One-sample z-test. Tests if a sample comes from a normal distribution with unknown variance and specified mean, against the alternative that it does not have that mean.</td>
</tr>
</tbody>
</table>

Bootstrap hypothesis testing (non-parametric alternative)

- Example, test that the means of two datasets are the same.

```matlab
load('organicmatter_two.mat');
% let combine the two dataset together
pooled_corg = cat(2, corg1, corg2);
pooled_corg = randsample(pooled_corg, 120); % randomize them for good measure, without replacement

n = length(corg1); % both happen to be 60 points long here
k = 1000; % take 1000 bootstrap samples.
sa = zeros(k, n); % zeros.m allows to preallocate memory
sb = sa;
for ii = 1:k
    % do this k times
    % random samples with replacement (true == replacement)
sa(ii, :) = randsample(pooled_corg, true); % take n=60 random samples
    sb(ii, :) = randsample(pooled_corg, true); % take n=60 random samples
end

d = mean(sa, 2) - mean(sb, 2); % difference the means in each row
% make a relative frequency histogram
[nn, xx] = hist(d, 20); figure; bar(xx, nn/sum(nn));
```
\texttt{[nn, xx] = hist(d,20); figure; bar(xx,nn/\text{sum(nn))};)

\texttt{obs_meandiff=mean(corg1)-mean(corg2);}
\texttt{hold on; plot([obs_meandiff,obs_meandiff],[0, \text{max(nn/\text{sum(nn))}]},'r')}

\textbf{How to get a p-value:}
\texttt{Nexceed=\text{length(find(d>obs_meandiff))};} % number exceeding observed
\texttt{p=Nexceed/k; \% probability of exceeding}
\texttt{p = 0.039}

\textbf{Compare bootstrap results with earlier ttest2 results.}

\texttt{>> mean(corg1)}
\texttt{25.5816}
\texttt{>> mean(corg2)}
\texttt{25.1507}

\texttt{[h,p,ci] = ttest2(corg1,corg2,0.05)}

\texttt{h = 0} \hspace{1cm} \text{(can NOT reject the null hypothesis that samples come from a population with the same mean at 95\% confidence level)}

\texttt{p = 0.0745 \hspace{1cm} (7.45\% chance Ho is true)}

\texttt{ci = -0.0433 \hspace{0.5cm} 0.9053 \hspace{0.5cm} (confidence interval for the true difference of population means.)}