NSSS Design (Ex: PWR)

Reactor Coolant System (RCS)

Purpose:
- Remove energy from core
- Transport energy to S/G to convert to steam of desired pressure (and temperature if superheated) and moisture content (if not superheated)

Common Design Objectives
- Minimize volume to reduce cost.
- Minimize leakage of core coolant
- Capability to withstand static and dynamic loadings
 - Component weight, content weight, thermal stresses, fluid forces, seismic loads and accidents loads (pipe break)
- Material compatibility (corrosion resistance)
- Capability to withstand thermal cycling
- Capability to withstand radiation damage.
- Serviceability and reliability

Components
- Reactor pressure vessel and contents
- Reactor coolant pumps
- Pressurizer
- Steam generator
Simplified Diagram of a Four-Loop NSSS with U-Tube Steam Generators
Simplified Diagram of a Two-Loop NSSS with Once Through Steam Generators
Reactor Pressure Vessel and Contents

Purpose:
- Provide mechanical support for fuel, control elements and incore instrumentation.
- Provide flow path for coolant to remove energy from fuel

Design considerations beyond common design objectives
- Minimize pressure vessel penetrations to reduce failure modes
- Desire multi-inlet and outlet flow nozzles to minimize
 - Loop equipment space requirements
 - Accident consequences of single loop failure
- Desire uniform core inlet flow
- Desire low cross flows on internals.

Pressure Vessel Characteristics
- Low alloy carbon steel ≈ 9” thick ⇒ good strength
- Inner cladding of 1/8” austenic SS ⇒ good corrosion resistance
- # of Nozzles:
 - Dependent on power rating and NSSS vendor

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Rating</th>
<th>Inlet</th>
<th>Outlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/Areva</td>
<td>600MWe</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>W/Areva</td>
<td>900MWe</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>W/Areva</td>
<td>1150MWe</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>C-E</td>
<td>1150MWe</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>B&W</td>
<td>1150MWe</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Reactor Pressure Vessel and Internals
Reactor Coolant Pumps

Purpose: Provide forced circulation of primary coolant around reactor coolant system
Note: has little to do w/ system pressure!

Design Considerations Beyond Common Design Objectives
- Sufficient coast down capability
- Desire single speed pump to reduce cost.

Example: (See Figure)
- (7000-9000)HP per pump
- Centrifugal pump/vertical shaft
- Three-phase induction motor
- Multi-seal arrangement
- Large flywheel
- RPM=1189
Reactor Coolant Pump
Figure 3-8. RCP Typical Shaft Seal Arrangement
Pressurizer

Purpose: Provide primary side pressure control during:
- Part of cold to hot startup
- Normal operation
- Accident conditions

Design considerations
- Accommodate primary water volume changes over power operation range
- Provide pressure control during load follow operation.
- Limit maximum primary system pressure.

Example: (see Figure)

Longer Term Pressure Control
- Pressure low ⇒ Turn on Electric Heaters ⇒ Increased void formation ⇒ Increased pressurizer energy content ⇒ Increased system pressure
- Pressure high ⇒ Turn on sprays (cold leg water) ⇒ Condense steam ⇒ Decreased pressurizer energy content ⇒ Decrease system pressure.
Typical Pressurizer
Principles of Prz Operation

Initial State → A

Instantaneous Prz level ↓ → B

Why Prz level ↓?

1. Leak in RCS
2. RCS av. Temp ↓ ⇒ ρ_{H_2O} ↑ ⇒ V^H_{RCS} ↓

Consider first the case of a non-condensable gas in the vapor space and incompressible liquid in the liquid space ⇒ Pressure behavior governed by the compressible gas.

Ideal Gas: $P^k = P\left(\frac{V}{M}\right)^k = \text{constant}$ for a reversible adiabatic process with an ideal gas ($k>1$)

$$P\left(\frac{V}{M}\right)^k = P_0\left(\frac{V_0}{M}\right)^k \Rightarrow P = P_0\left(\frac{V_0}{V}\right)^k$$

In addition

$$\frac{T}{T_0} = \left(\frac{V_0}{V}\right)^{k-1} \Rightarrow T = T_0\left(\frac{V_0}{V}\right)^{k-1}$$
\[P = P_0 \left(\frac{V_0}{V} \right)^k \quad T = T_0 \left(\frac{V_0}{V} \right)^{k-1} \]

Volume Increase (outsurge): Level \(\downarrow \Rightarrow V_{\text{gas}} \uparrow \Rightarrow T_{\text{gas}} \downarrow \Rightarrow P_{\text{gas}_{\text{PRZ}}} \downarrow \Rightarrow P_{\text{sys}} \downarrow \)

Gas Expands \(\Rightarrow T_{\text{gas}^{-(B)}_{\text{PRZ}}} < T_{\text{gas}^{-(A)}_{\text{PRZ}}} \) due to expansion work

Volume Decrease (insurge): Level \(\uparrow \Rightarrow V_{\text{gas}} \downarrow \Rightarrow T_{\text{gas}} \uparrow \Rightarrow P_{\text{gas}_{\text{PRZ}}} \uparrow \Rightarrow P_{\text{sys}} \uparrow \)

Gas Compresses \(\Rightarrow T_{\text{gas}^{-(B)}_{\text{PRZ}}} > T_{\text{gas}^{-(A)}_{\text{PRZ}}} \) due to compressive work
Consider next the case of a saturated liquid vapor system where vapor can exist in the liquid space.

In this case, the liquid vapor mixture acts as a single compressible fluid in a fixed volume with behavior

\[m \uparrow \downarrow \Rightarrow P_{PRZ} \uparrow \downarrow \]

\[E \uparrow \downarrow \Rightarrow P_{PRZ} \uparrow \downarrow \]

Volume Increase (outsurge): \[m \downarrow \Rightarrow P_{PRZ} = P_{sat} \downarrow \Rightarrow P_{sys} \downarrow \]

If \(P_{steam}^{(B)} < P_{PRZ}^{prog} \) \(\Rightarrow \) turn on PRZ heaters \(\Rightarrow \) Increases the boiling (vapor generation)

\[E \uparrow \Rightarrow P_{PRZ} \approx P_{sys} \uparrow \]

Volume Decrease (insurge): \(V_{Steam} \downarrow \Rightarrow P_{Steam}^{PRZ} \uparrow \Rightarrow T_{Steam}^{PRZ} \uparrow \) due to compression work

\[T_{CPRZ}^{Steam(B)} > T_{Sat}^{(B)} \) so no condensation

If \(P_{steam}^{(B)} > P_{PRZ}^{prog} \) \(\Rightarrow \) turn off PRZ heaters (usually on to offset heat losses) and if necessary turn on sprays. Sprays add “cold” water to the pressurizer condensing steam.

\[E \downarrow \Rightarrow P_{PRZ} \approx P_{sys} \downarrow \]

Excessive High Pressure

1st: Open Pilot Operated Relief Valve (PORV)

2nd: Open Pressurizer Safety Valves
Heater Operation

Time (seconds)

Pressure (psia)

0 50 100 150 200 250 300

1980 2000 2020 2040 2060 2080 2100
Heater Operation

Table:

<table>
<thead>
<tr>
<th>Time (Seconds)</th>
<th>Vapor Volume Fraction</th>
<th>Vapor Mass Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.318</td>
<td>0.0630</td>
</tr>
<tr>
<td>50</td>
<td>0.318</td>
<td>0.0635</td>
</tr>
<tr>
<td>100</td>
<td>0.322</td>
<td>0.0640</td>
</tr>
<tr>
<td>150</td>
<td>0.324</td>
<td>0.0645</td>
</tr>
<tr>
<td>200</td>
<td>0.326</td>
<td>0.0650</td>
</tr>
<tr>
<td>250</td>
<td>0.328</td>
<td>0.0655</td>
</tr>
<tr>
<td>300</td>
<td>0.330</td>
<td>0.0660</td>
</tr>
</tbody>
</table>

Graphs:

1. **Vapor Volume Fraction vs. Time (Seconds):**
 - Line 1: Steam Volume Fraction
 - Line 2: Steam Mass Fraction

2. **Liquid Density vs. Time (Seconds):**
 - Line 1: Liquid Density
 - Line 2: Vapor Density

```
<table>
<thead>
<tr>
<th>rhof</th>
<th>rhog</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.2</td>
<td>5.2</td>
</tr>
<tr>
<td>38.4</td>
<td>5.3</td>
</tr>
<tr>
<td>38.6</td>
<td>5.4</td>
</tr>
<tr>
<td>38.8</td>
<td>5.5</td>
</tr>
<tr>
<td>39.0</td>
<td>5.6</td>
</tr>
</tbody>
</table>
```
Spray Operation

Time (seconds) | 0 2 04 06 08 10 10
Pressure (psia) | 2200 2250 2300 2350 2400 2450 2500 2550

![Graph showing the decrease in pressure over time for a spray operation.](image)
Spray Operation

Time (Seconds) vs. Vapor Volume Fraction and Vapor Mass Fraction

- Vapor Volume Fraction
- Vapor Mass Fraction

Time (Seconds)

Liquid Density vs. Vapor Density

- Liquid Density
- Vapor Density

Time (Seconds)
Reactor Coolant System Flow Diagram
Steam Generators

Purposes:
- Transport energy from primary loop to secondary loop and produce steam of given pressure and moisture content.
- Provide radioactive barrier for fission products and other activated materials.

Design Considerations
- Capability to transport energy for warranted load follow within moisture content spec. (not a concern for superheated type S/G).
- Provide as integral part of S/G means of limiting steam flow if steam line breaks.

Example: (see figure)
- Tube Side: Primary Loop
- Shell Side: Secondary Loop
- Carbon Steel Vessel/Inconel Tubing

Design Types
- U-Tube: Compact, large shell side water inventory, recirculation type S/G
- Once-Through: Counter flow, superheater section, relatively small shell side water inventory
U-Tube Steam Generator
Auxiliary Systems

Chemical and Volume Control System (CVCS)

Purposes:
- Maintain proper water level in pressurizer
- Control primary coolant chemistry including pH
- Adjust soluble boron concentration consistent with reactivity requirements
- Initially pressurize system.

Design Considerations
- Capability to rapidly isolate CVCS letdown upon initiation of certain accidents since located outside containment building.

Product (see Figure)
Residual Heat Removal System (RHRS)

Purpose:
Remove energy from core (stored and decay heat) and coolant system (stored) to allow plant cooldown when S/G no longer available for:
- Normal operation
- Accidents

Safety System ⇒ Single Failure Criteria applies (must assume one single active failure of a component called upon to mitigate accident consequences)
Implies ⇒ ≥ 2 Independent Systems (2 Trains) ⇒ Runs off emergency power.

Design Considerations
- High reliability and maintainability in radiation environment
- Automatic isolation from primary system when pressure too high (RHRS lower pressure system [≤~300 psia])
- Testable

Example: (See Figure)
Residual Heat Removal System Flow Diagram
Safety Injection System (SIS)

Purpose:
- Provide emergency coolant to the reactor core to remove stored and decay heat.
- Inject borated water to assure subcriticality following a steamline break accident or LOCA
- Safety System \Rightarrow 2 Trains \Rightarrow Runs off emergency power

Design Considerations
- Automatically activated by plant protection system.
- Testable
- High Reliability

Example: (see Figure)

Reality of Water Injection via Pumps
- High Pressure \Rightarrow Low Volume
- Low Pressure \Rightarrow High Volume

Example: W 4 loop plant

<table>
<thead>
<tr>
<th>Pressure (psig)</th>
<th>Source of Flow</th>
<th>Flow Rate (gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1525</td>
<td>2 Centrifugal Pumps (CVCS)</td>
<td>150/each</td>
</tr>
<tr>
<td><1525</td>
<td>2 Centrifugal Pumps (SI)</td>
<td>425/each</td>
</tr>
<tr>
<td><650</td>
<td>4 Accumulators</td>
<td>-</td>
</tr>
<tr>
<td><200</td>
<td>2 RHRS Pumps</td>
<td>3000/each</td>
</tr>
</tbody>
</table>

Water Sources
1) CVCS (Boron Injection Tank) \Rightarrow 900 Gallons
2) Refueling Water Storage Tank \Rightarrow 400,000 Gallons
3) Accumulators \Rightarrow 3,400 Gallons
4) Sump Recirculation
Safety Injection System (SIS)
Main Feedwater System (F/W)

Purpose
- Provide F/W to S/G at desired temperature, pressure, and mass flow rate such that:
 - F/W Flow = Steam Flow
 - S/G water level on programmed value.

Design Considerations
- Can handle load follow transients
- Can isolate F/W flow from S/G (needed for steamline break accident)
- Partially operable in a degraded state

Example: (See Figure)
- Dual F/W pumps
- Startup and main F/W regulating valves
Auxiliary (Emergency) F/W System

Purpose
- Provide alternative source of F/W
 - During no or low power operation
 - During emergency conditions when Main F/W is lost. ⇒ Safety System ⇒≥ 2 Trains

Design Considerations
- Automatic activated by plant protection system
- Testable
- High Reliability
- Easy to isolate to prevent excessive cooldown (steamline accident).

Example: (See Figure)
- Dual Aux F/W pumps (motor driven)
- Dual turbine driven pumps using S/G produced steam
- Aux F/W pumps- S/G paired so failed S/G will not affect intact S/G

Note: Still need electrical power for turbine controls
Figure 5.2-1. Emergency Feedwater System, Flow Diagram
Emergency Electrical System

Purpose
- Provide AC and DC power when on-site and off-site power lost in order to power essential equipment and instruments ⇒ safety system ⇒ ≥ 2 trains

Design Considerations
- Automatic activated by plant protection system
- Testable
- High reliability

Example:
- Two diesel generators (Oconee is hydro)
- Battery Bank
- Two electrical trains
- Load shed & loading features
- Invertors (DC to AC and AC to DC)
Figure 15.3.1. Typical Steam, Condensate and Feedwater System, Flow Diagram