A natural circulation boiling water reactor operates at a pressure of 1000 psia. The average densities in the non boiling and boiling heights are 47 and 38 lbm/ft3 respectively. The corresponding non boiling and boiling heights are 2 and 3 feet respectively. Assuming a downcomer temperature of 520 F, a core exit quality of 8 percent and a core exit slip ratio of 2, show how you would compute the chimney height if the total friction and forms losses around the loop are 0.527 psi.

SOLUTION

At steady state, the buoyancy forces must equal the total pressure loss around the loop. The buoyancy forces are obtained by integrating the density distribution around the closed loop such that

\[
\Delta P = -\int \rho \frac{g}{g_c} \, dH
\]

\[
\int \rho \frac{g}{g_c} \, dH = \int \rho \frac{g}{g_c} \, dH \left(c_o \right) + \int \rho \frac{g}{g_c} \, dH \left(H_o \right) + \int \rho \frac{g}{g_c} \, dH \left(H_b \right)
\]

\[
\int \rho \frac{g}{g_c} \, dH = -\rho_{dc} \frac{g}{g_c} H_{dc} + \bar{\rho}_{H_o} \frac{g}{g_c} H_o + \bar{\rho}_{H_b} \frac{g}{g_c} H_B + \rho_{ch} \frac{g}{g_c} H_{ch}
\]

Note: \(H_{dc} = H_{ch} + H_o + H_B \)

\[
\int \rho \frac{g}{g_c} \, dH = -\rho_{dc} \frac{g}{g_c} (H_{ch} + H_o + H_B) + \bar{\rho}_{H_o} \frac{g}{g_c} H_o + \bar{\rho}_{H_b} \frac{g}{g_c} H_B + \rho_{ch} \frac{g}{g_c} H_{ch}
\]

\[
\Delta P = -\left(\bar{\rho}_{H_o} - \rho_{dc} \right) \frac{g}{g_c} H_o - \left(\bar{\rho}_{H_b} - \rho_{dc} \right) \frac{g}{g_c} H_B - \left(\rho_{ch} - \rho_{dc} \right) \frac{g}{g_c} H_{ch}
\]

\[
\Delta P = \left(\rho_{dc} - \rho_{H_o} \right) \frac{g}{g_c} H_o + \left(\rho_{dc} - \rho_{H_b} \right) \frac{g}{g_c} H_B + \left(\rho_{ch} - \rho_{dc} \right) \frac{g}{g_c} H_{ch}
\]

\[
\Delta P - \left(\rho_{dc} - \bar{\rho}_{H_o} \right) \frac{g}{g_c} H_o - \left(\rho_{dc} - \bar{\rho}_{H_b} \right) \frac{g}{g_c} H_B = (\rho_{dc} - \rho_{ch}) \frac{g}{g_c} H_{ch}
\]

\[
\frac{\Delta P - \left(\rho_{dc} - \bar{\rho}_{H_o} \right) \frac{g}{g_c} H_o - \left(\rho_{dc} - \bar{\rho}_{H_b} \right) \frac{g}{g_c} H_B}{\left(\rho_{dc} - \rho_{ch} \right) \frac{g}{g_c}} = H_{ch}
\]

The total pressure drop around the loop includes the friction, forms and acceleration losses. The friction and forms losses are given. The acceleration loss is given by
\[
\Delta P_{acc} = \frac{G^2}{g_c} \left[\left(\frac{1-x}{x} \right)^2 + \frac{x^2}{H \rho_H} \right] - \frac{1}{\rho_{dc}} \]

For the given data:

\[\rho_{dc} \approx \rho_f \quad \text{at} \quad 520 \quad \text{F} = 47.82 \]

\[\bar{\rho}_{H_a} = 47 \]

\[\bar{\rho}_{H_b} = 38 \]

\[H_a = 2 \]

\[H_B = 3 \]

The density in the chimney is given by \(\rho_{ch} = \alpha_f \rho_f + \alpha_g \rho_g \) where the \(\alpha_k \)'s are the phasic volume fractions at the core exit. The vapor volume fraction can be obtained from the Fundamental Void-Quality-Slip relationship

\[
\alpha_g = \frac{1}{1 + \left(\frac{1-x}{x} \right) \rho_g S} \]

Given the core exit void fraction and quality, the acceleration loss can be determined directly for any given mass flux such that

\[\Delta P = \Delta P_{friction} + \Delta P_{forms} + \Delta P_{acceleration} \]

and the chimney height can be determined directly from

\[
\Delta P = \left(\rho_{dc} - \bar{\rho}_{H_a} \right) \frac{g}{g_c} H_a - \left(\rho_{dc} - \bar{\rho}_{H_b} \right) \frac{g}{g_c} H_B \]

\[
\left(\rho_{dc} - \rho_{ch} \right) \frac{g}{g_c} = H_{ch} \]