The Fundamental Theorem of Calculus

Let \(F : [a, b] \to \mathbb{R} \) s.t.

(a) \(F \) is continuous on \([a, b]\)

(b) \(F'(x) = f(x) \quad \forall x \in (a, b) \)

(c) \(f \in R(a, b) \)

Then

\[
\int_a^b f(x) \, dx = F(b) - F(a)
\]

Fix \(a \leq x \leq b \). Since \(F \in R([a, b]) \), we \(\exists \delta > 0 \) s.t. \(F \) is a tagged partition of \([a, b]\)

Thus:

\[
F(b) - F(a) = \sum_{i=1}^{n} F(x_i) - F(x_{i-1}) = \sum_{i=1}^{n} f(c_i) \cdot (x_i - x_{i-1})
\]

If we choose \(t = 0 \) in the dirivative \(F' \), then

\[
\left| F(b) - F(a) \right| = \int_a^b f(x) \, dx
\]

\(\overset{\text{R.H.}}{=} \) \(\overset{\text{L.H.}}{=} \) \(\overset{\text{Theorem}}{=} \)

If \(F \) is differentiable, \(\text{L.H.} \) is satisfied

If \(F \) is differentiable, \(\text{R.H.} \) is not automatically satisfied

Def If \(F \) is a function satisfying the assumption of the theorem, then \(F \)

is called the antiderivative or primitive of \(f \).

\(\text{Ex} \quad (a) \quad F(x) = \frac{x^2}{2} \quad x \in [a, b] \)

Thus, all assumptions of FTC are satisfied and

\[
\int_a^b f(x) \, dx = \left[\frac{x^2}{2} \right]_a^b = \frac{b^2 - a^2}{2}
\]

\(\text{Ex} \quad (b) \quad g(x) = \begin{cases} x & x \in [-10, 10] \\ 0 & \text{otherwise} \end{cases} \)

\[
\int_{-10}^{10} g(x) \, dx = \begin{cases} 10 - (-10) = 20 & x \in [-10, 10] \\ 0 & \text{otherwise} \end{cases}
\]

\(\text{Ex} \quad (c) \quad h(x) = \begin{cases} x & x \in [0, b] \\ 0 & \text{otherwise} \end{cases} \)

It is continuous on \([0, b]\) and \(H'(x) = 1/x \quad \forall x \in (0, b) \). Since \(h \neq H' \) is not bounded on \((0, b)\), then \(F \) does not belong to \(R(a, b) \).

Thus, FTC does not apply. (\(h \neq H' \) is not a generalized Riemann integrable on \((0, b)\)).
Def. If $f \in R([a,b])$, then the function

$$F(x) = \int_a^x f(t) \, dt, \quad x \in [a,b]$$

is the **indefinite integral** of f with basepoint a.

Thus, the indefinite integral $F(x)$ is continuous on $[a,b]$.

In fact, if $f(x) \leq F(x)$, then $|F(x) - F(w)| \leq M |x - w| \quad \forall x, w \in [a,b]$

Proof. In $[a,b]$, we have

$$F(x) = \int_a^x f(t) \, dt = \int_a^w f(t) \, dt + \int_w^x f(t) \, dt = F(w) + \int_w^x f(t) \, dt$$

Thus, $F(x) - F(w) = \int_w^x f(t) \, dt$$

Since $|f(t)| \leq M$ in $[a,b]$, then $-M |x - w| \leq \int_w^x f(t) \, dt \leq M |x - w|$

Hence, $|F(x) - F(w)| \leq M |x - w|$

Thus (FTC, second form) let $f \in R([a,b])$ and F be the function at $c \in (a,b)$.

Then $F(x) = \int_a^x f(t) \, dt$ is differentiable at c and $F'(c) = f(c)$.

Proof. Let $c \in (a,b)$ and choose the right-hand derivative of F at c.

Since f is continuous at c, given $\delta > 0$, $\exists \eta > 0$ s.t.

$$0 < x - c < \eta \Rightarrow \int_c^{c+\eta} f(t) \, dt < \eta$$

Choose k satisfying $0 < k < \eta$. Then

$$F(c + k) - F(c) = \int_c^{c+k} f(t) \, dt$$

Using inequality (i), we have

$$\left| F(c + k) - F(c) \right| \leq \int_c^{c+k} |f(t) - f(c)| \, dt \leq M |x - c| + \int_c^{c+k} f(t) \, dt$$

Thus:

$$f(c) = \frac{F(c + k) - F(c)}{k} \rightarrow f(c) \quad k \rightarrow 0$$

This shows that

$$\lim_{k \rightarrow 0} \frac{F(c + k) - F(c)}{k} = f(c)$$

The left-hand limit is computed in the same way.

Corollary. If f is continuous on $[a,b]$, then $F(x) = \int_a^x f(t) \, dt$ is differentiable on $[a,b]$ and $F'(x) = f(x)$.

Ex. Let \(f : (-1,1) \to \mathbb{R} \) be a function and let \(F(x) = \int_0^x f(t) \, dt \). Show that if \(F(x) \) is differentiable at some point \(x_0 \) in \((-1,1)\), then \(F(x) \) is differentiable on \((-1,1)\).

Proof.

Assume \(F(x) \) is differentiable at \(x_0 \). Then, by the Fundamental Theorem of Calculus, we have

\[
F(x) = \left. \frac{d}{dx} \int_0^x f(t) \, dt \right|_{x=x_0} = f(x_0)
\]

for every \(x \) in \((-1,1)\) such that \(x \neq x_0 \). Therefore, \(F(x) \) is differentiable on \((-1,1)\).

Let \(f : [a,b] \to \mathbb{R} \) be a bounded function. According to Lebesgue's Integrability Criterion, \(f \) is integrable on \([a,b] \) if it is continuous \(\forall x \in (a,b) \setminus N \), where \(N \) is a null set.

- Lebesgue's Integrability Criterion: A bounded function \(f : [a,b] \to \mathbb{R} \) is integrable on \([a,b] \) if it is continuous \(\forall x \in (a,b) \setminus N \), where \(N \) is a null set.

Let \(f : [a,b] \to \mathbb{R} \) be a bounded function and let \(g : [a,b] \to \mathbb{R} \) be a continuous function. Then, the composition \(g \circ f : [a,b] \to \mathbb{R} \) is integrable on \([a,b] \).

Proof.

By the Lebesgue's Integrability Criterion, \(f \) is integrable on \([a,b] \). Therefore, \((g \circ f) \) is also integrable on \([a,b] \).