1. (35 points) Consider the linear functional f on \mathbb{R}^3 defined by $f(\alpha) = \gamma \cdot \alpha$ (dot product of vectors) where $\gamma = (1, 0, -1)$. Let W be the kernel of f. Find a linear operator T on \mathbb{R}^3 such that $T\alpha = \alpha$ for $\alpha \in W$ and $T\gamma = -\gamma$. Determine $T(x_1, x_2, x_3)$.

2. (35 points) Consider the real vector space V of polynomials from $\mathbb{R}[x]$ of degree ≤ 2 and the linear operator T given by $(Tp)(x) = xp'(x)$ for $p \in V$. Let f_1, f_2, f_3 be the linear functionals on V defined by $f_1(p) = p(0), \ f_2(p) = p'(0), \ f_3(p) = \int_0^1 p(x)dx, \ p \in V.$

Find the matrix of T relative to the basis $\{p_1, p_2, p_3\}$ for V, whose dual basis is $\{f_1, f_2, f_3\}$.

3. (30 points) Let A be a linear operator on a finite-dimensional vector space V. A subspace W of V is called A-invariant if $A(\alpha) \in W$ for all $\alpha \in W$. Prove that W is A-invariant if and only if W^0 is A'-invariant.