1. Let V be the vector space of all 2×2 matrices with entries in a field F. Let W_1 be the subset of all matrices of the form $\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}$, and W_2 be the subset of all matrices of the form $\begin{bmatrix} a & -a \\ b & c \end{bmatrix}$.

 a. Show that W_1 and W_2 are subspaces of V.
 b. Find bases for W_1, W_2 and $W_1 \cap W_2$.
 c. Find the dimensions of W_1, W_2, $W_1 \cap W_2$ and $W_1 + W_2$.

2. Let V be the vector space of all real-valued polynomials $p(x)$ of degree ≤ 2, and $T: V \to \mathbb{R}^2$ be the map given by

 $$T(p) = \left(p'(1), \int_0^1 p(x) \, dx \right).$$

 a. Check that T is a linear transformation.
 b. Find a basis for $\text{Ker} T$ and determine the rank of T.
 c. Find the matrix of T relative to the pair of ordered bases $\{1, x, x^2\}$, $\{(1, 1), (0, 1)\}$.

3. Let T be the linear operator on \mathbb{R}^3 represented by the matrix
 $$\begin{bmatrix} 0 & 1 & -1 \\ -1 & -2 & 5 \\ 0 & 0 & 3 \end{bmatrix}.$$

 a. Find the characteristic polynomial and the minimal polynomial of T.
 b. Determine all eigenvalues and eigenvectors of T. Is T diagonalizable?
 c. Find two nonzero T-invariant subspaces W_1 and W_2 of \mathbb{R}^3 such that $\mathbb{R}^3 = W_1 \oplus W_2$.
 d. Find the Jordan form of T a basis for \mathbb{R}^3 in which T is in Jordan form.

4. For fixed $c \in \mathbb{R}$, $n \in \mathbb{N}$, denote by V the vector space of all real-valued functions of the form $p(x)e^{cx}$ where $p(x)$ is a polynomial of degree $\leq n - 1$. Note that V is invariant under $D = d/dx$, and consider D as a linear operator on V.

 a. Find the characteristic polynomial and the minimal polynomial of D.
 b. Prove that V has a cyclic vector for D.
 c. Prove that every linear operator T on V that commutes with D is a polynomial of D.

5. Check that $f(A, B) = \text{tr}(AB)$ is a non-degenerate symmetric bilinear form on the vector space of $n \times n$ matrices with entries in \mathbb{C}.