A disk of mass m_{puck} traveling with initial velocity $v_{\text{puck},i} = 3.0$ m/s in the x-direction strikes a stick of mass m_{stick} and moment of inertia I, 2 meters from its center, that is lying flat on nearly frictionless ice. Assume the collision is elastic.
For this situation, have groups set up and indicate the unknowns:

A: Momentum principle

\[
\Delta \vec{p} = \vec{F}_{\text{net}} \Delta t
\]

\[
\Delta \left(m_{\text{puck}} v_{\text{puck}} + m_{\text{stick}} v_{\text{stick}} \right) = 0
\]

\[
\left(m_{\text{puck}} v_{\text{puck}} + m_{\text{stick}} v_{\text{stick}} \right)_{\text{final}} - \left(m_{\text{puck}} v_{\text{puck}} \right)_{\text{initial}} = 0
\]

\[
(2 \times 2.3 + 1 \times 1.3)_{\text{final}} - (2 \times 3.0)_{\text{initial}} = 0
\]

\[
(4.6 + 1.3)_{\text{final}} - (6.0)_{\text{initial}} = 0
\]

B: Angular momentum principle

\[
\Delta \vec{L} = \vec{r}_{\text{net}} \Delta t
\]

\[
\Delta \left(L_{\text{puck}} + L_{\text{stick}} \right) = 0
\]

\[
\left(-2 \times 2.3 \times 2 + (-2.7) \right)_{\text{final}} - (-2 \times 3 \times 2)_{\text{initial}} = 0
\]

\[
(-9.2 - 2.7)_{\text{final}} - (-12)_{\text{initial}} = 0
\]

C: Energy principle

\[
\Delta E = \vec{F}_{\text{net}} \cdot \Delta \vec{r}
\]

\[
\Delta \left(K_{\text{puck}} + K_{\text{stick}} \right) = 0
\]

\[
\left(\frac{1}{2} 2 \times 2.3^2 + \frac{1}{2} 1 \times 1.3^2 + \frac{1}{2} 1.337 \times 2^2 \right)_{\text{final}} - \left(\frac{1}{2} 2 \times 3.0^2 \right)_{\text{initial}} = 0
\]

\[
(5.3 + 0.9 + 2.7)_{\text{final}} - (9)_{\text{initial}} = 0
\]

Have one of each group present and show that you have a system of three equations and three unknowns, \(v_{df}, \ v_s, \) and \(\omega \). They should verify the table results.