Math 231 Spring 2007

Practice Final Solutions

Show all work.

1. (8 points) Use the method of least squares to find the straight line that best fits the points
 \[(2, 2), \quad (3, 0), \quad (7, -1). \]

2. (10 points) Evaluate
 \[\int \int_R (x^2 y + y^2) \, dxdy \]
 where \(R \) is the rectangle \(0 \leq x \leq 2 \) and \(2 \leq y \leq 3 \).

3. (12 points) Find the critical points of
 \[f(x, y) = x^3 - y^2 - 3x + 4y, \]
 and determine whether they are minima, maxima or saddle points.

4. (10 points) (a) Sum the series
 \[\frac{3}{4} - \frac{3}{16} + \frac{3}{64} - \frac{3}{256} + \cdots. \]

 (b) A doctor wishes to give a patient a daily dose of \(D \) mgs of a certain medicine. The doctor knows that the body eliminates each day 70% of the amount present in the body. In the long run, the doctor would like the amount of drug in the body to approach 6 mgs. What should \(D \) be?

5. (8 points) Find the third Taylor polynomial at \(x = 1 \) for the function
 \[f(x) = \frac{1}{(x + 1)} = (x + 1)^{-1}. \]

6. (12 points) Use separation of variables to solve the following differential equations:

 (a) \(\frac{dy}{dt} = yt, \quad y(0) = 1; \) \quad (b) \(\frac{dy}{dt} = y^3t + y^3, \quad y(0) = 1. \)

7. (8 points) If a radioactive substance decays from 5 grams to 3 grams in 6 days, when will only 1 gram remain?

8. (10 points) For the differential equation \(\frac{dy}{dt} = (y + 1)(y - 7) \) sketch the constant solutions and the solutions corresponding to \(y(0) = -3, \quad y(0) = 2, \quad y(0) = 10. \)

9. (10 points) A scientist is growing a bacteria culture. She knows that the bacteria grow at a rate of 3% per day. In addition, she wants to remove \(M \) bacteria each day. Initially she has a culture of 500,000 bacteria.

 (a) Find a differential equation for \(y(t) \), the population size after \(t \) days.
(b) What is the maximum number of bacteria she can remove each day without eventually killing off the population of bacteria?

10. **(6 points)** Use two iterations of the Newton-Raphson method to approximate a zero of \(x^3 - x - 2 \) between 1 and 2. Let \(x_0 = 1 \).

11. **(6 points)** Use Euler's method with \(n = 2 \) to approximate \(y(2) \) where \(y(t) \) is a solution of \(\frac{dy}{dt} = t - 2y \) and \(y(0) = 2 \).