Assessed Problem Set 3

Answer all questions. Your answers must be handed in to me in class on Wednesday, April 13.

Consider the model

\[y_t = \theta_0 y_{t-1} + m_t' \gamma_0 + u_t \]
\[u_t = \rho_0 u_{t-1} + w_t \] (1)

where \(\beta = (\theta, \gamma)' \), \(x_t' = (y_{t-1}, m_t') \), \(m_t \) is \(k \times 1 \), \(|\theta_0| < 1\), \(|\rho_0| < 1\), and \(w_t \sim iid(0, \sigma^2) \) with \(\sigma^2 > 0 \).

You may assume:

(a) \(\{m_t\} \) is independent of \(\{u_t\} \);
(b) \(v_t = (m_t, u_t)' \) is covariance stationary and ergodic for the second moments;
(c) \(y_t = \sum_{i=0}^{\infty} \theta_i a_{t-i} \) where \(a_t = m_t' \gamma_0 + u_t \);
(d) \(E[x_t x_t'] = Q \), a nonsingular matrix of constants.

Note that (b) and (c) imply that \((x_t, u_t)' \) is covariance stationary and ergodic for the second moments.

1. Let \(\hat{\beta}_{OLS} \) be the OLS estimator of \(\beta_0 \) based on (1). Show that \(\hat{\beta}_{OLS} \) is an inconsistent estimator if \(\rho_0 \neq 0 \) but that \(\hat{\beta}_{OLS} \) is a consistent estimator for \(\beta_0 \) if \(\rho_0 = 0 \).

2. Let \(z_t = (m_{i,t-1}, m_t)' \) where \(m_{i,t-1} \) is the \(i^{th} \) element of \(m_{t-1} \) and consider the Instrumental Variables (IV) estimator of \(\beta_0 \), \(\hat{\beta}_{IV} = (Z'X)^{-1}Z'y \) where \(Z \) is the \(T \times (k + 1) \) matrix with \(t^{th} \) row \(z_t \). Assuming that \(E[z_t x_t]' = Q_{zx} \), a nonsingular matrix, show that \(\hat{\beta}_{IV} \) is consistent for \(\beta_0 \).

3. Assuming that \(T^{-1/2} Z' u \) satisfies the CLT for covariance stationary processes, show that \(T^{1/2}(\hat{\beta}_{IV} - \beta_0) \xrightarrow{d} N(0, Q_{zx}^{-1} S(Q_{zx}^{-1})') \) where \(S \) is the long run variance of \(z_t u_t \).

4. Suppose it is desired to test the null hypothesis \(H_0 : R\beta_0 = r \) where \(R \) is a \(q \times (k + 1) \) matrix of constants with rank equal to \(q \) and \(r \) is a \(q \times 1 \) vector of constants. Propose a test statistic based on \(\hat{\beta}_{IV} \) and state its distribution under the null hypothesis.