The Definite Integral

Definition of a Definite Integral If f is a continuous function defined for $a \leq x \leq b$, we divide the interval $[a, b]$ into n subintervals of equal width $\Delta x = (b - a)/n$. We let $a = x_0, x_1, x_2, \ldots, x_n = b$ be the endpoints of these subintervals and we choose sample points $x_1^*, x_2^*, \ldots, x_n^*$ in these subintervals, so x_i^* lies in the ith subinterval $[x_{i-1}, x_i]$. Then the **definite integral of f from a to b** is

$$\int_a^b f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*)\Delta x$$

Remarks.

1. Because we have assumed that f is continuous, it can be proved that the limit in Definition always exists and gives the same value no matter how we choose the sample point x_i^*.

2. The symbol \int was introduced by Leibnitz and is called an **integral sign**. In the notation $\int_a^b f(x)dx$, $f(x)$ is called the **integrand** and a and b are called the **limits of integration**: a is the **lower limit** and b is the **upper limit**. The procedure of calculating an integral is called **integration**.

3. The definite integral $\int_a^b f(x)dx$ is a number; it does not depend on x. In fact, we could use any letter in place of x without changing the value of the integral:

$$\int_a^b f(x)dx = \int_a^b f(t)dt = \int_a^b f(r)dr$$

Properties of the Definite Integral

$$\int_a^b f(x)dx = -\int_b^a f(x)dx$$

$$\int_a^a f(x)dx = 0$$

1. $\int_a^b cdx = c(b - a)$, where c is any constant.

2. $\int_a^b [f(x) + g(x)]dx = \int_a^b f(x)dx + \int_a^b g(x)dx$

3. $\int_a^b cf(x)dx = c\int_a^b f(x)dx$, where c is any constant.

4. $\int_a^b [f(x) - g(x)]dx = \int_a^b f(x)dx - \int_a^b g(x)dx$
5. If \(f(x) \geq 0 \) for \(a \leq x \leq b \), then \(\int_{a}^{b} f(x) \, dx \geq 0 \).

6. If \(f(x) \geq g(x) \) for \(a \leq x \leq b \), then \(\int_{a}^{b} f(x) \, dx \geq \int_{a}^{b} g(x) \, dx \).

7. If \(m \leq f(x) \leq M \) for \(a \leq x \leq b \), then
 \[
 m(b-a) \leq \int_{a}^{b} f(x) \, dx \leq M(b-a).
 \]

The Fundamental Theorem of Calculus Suppose \(f \) is continuous on \([a, b]\).

1. \(\frac{d}{dx} \int_{a}^{x} f(t) \, dt = f(x) \).

2. \(\int_{a}^{b} f(x) \, dx = F(b) - F(a) \), where \(F \) is any antiderivative of \(f \), that is, \(F' = f \).

Total Change Theorem The integral of a rate of change is the total change:

\[
\int_{a}^{b} F'(x) \, dx = F(b) - F(a)
\]

Indefinite Integrals

The notation \(\int f(x) \, dx \) is used for an antiderivative of \(f \) and is called an **indefinite integral**. Thus

\[
\int f(x) \, dx = F(x) \quad \text{means} \quad F'(x) = f(x)
\]

You should distinguish carefully between definite and indefinite integrals. A definite integral \(\int_{a}^{b} f(x) \, dx \) is a number, whereas an indefinite integral \(\int f(x) \, dx \) is a function.

Evaluation Theorem If \(f \) is continuous function on the interval \([a, b]\), then

\[
\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(x) \, dx \bigg|_{a}^{b} = F(b) - F(a)
\]

where \(F \) is any antiderivative of \(f \), that is \(F' = f \).
Table of Indefinite Integrals

\[\int f(x) \pm g(x) \, dx = \int f(x) \, dx \pm \int g(x) \, dx \]

\[\int cf(x) \, dx = c \int f(x) \, dx \]

\[\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \quad (n \neq -1) \]

\[\int \frac{1}{x} \, dx = \ln |x| + C \]

\[\int e^x \, dx = e^x + C \]

\[\int a^x \, dx = \frac{a^x}{\ln a} + C \]

\[\int \sin x \, dx = -\cos x + C \]

\[\int \cos x \, dx = \sin x + C \]

\[\int \sec^2 x \, dx = \tan x + C \]

\[\int \csc^2 x \, dx = -\cot x + C \]

\[\int \sec x \tan x \, dx = \sec x + C \]

\[\int \csc x \cot x \, dx = -\csc x + C \]

\[\int \frac{1}{x^2 + 1} \, dx = \arctan x + C \]

\[\int \frac{1}{\sqrt{1 - x^2}} \, dx = \arcsin x + C \]