MA 425-002 Problems on Infinite Series

S. Schecter

November 21, 2005

1. Section 9.1, problem 7a.
2. Section 9.1, problem 12.
4. Use the integral test to show that the series \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) converges if \(p > 1 \) and diverges if \(0 < p \leq 1 \).
6. Let \(\sum_{n=1}^{\infty} x_n \) be a series with positive terms. Suppose \(\lim_{n \to \infty} \frac{x_n}{x_{n+1}} = r \) with \(r < 1 \). Let \(r < r_1 < 1 \), let \(s_n \) denote the \(n \)th partial sum of the series, and let \(s \) denote the sum of the series. Show there exists an integer \(N \) such that for all \(n \geq N \), \(s - s_n < \frac{x_{n+1}}{1-r_1} \).