A Theoretical Introduction to Numerical Analysis
Contents

Preface xi
Acknowledgments xiii

1 Introduction 1
1.1 Discretization ...................................... 4
   Exercises ........................................... 5
1.2 Conditioning ....................................... 6
   Exercises ........................................... 7
1.3 Error .............................................. 7
   1.3.1 Unavoidable Error ........................... 8
   1.3.2 Error of the Method ......................... 10
   1.3.3 Round-off Error ............................ 10
   Exercises ........................................... 11
1.4 On Methods of Computation ...................... 12
   1.4.1 Accuracy .................................... 13
   1.4.2 Operation Count ............................ 14
   1.4.3 Stability .................................... 14
   1.4.4 Loss of Significant Digits .................. 15
   1.4.5 Convergence ................................ 18
   1.4.6 General Comments ......................... 18
   Exercises ........................................... 19

I Interpolation of Functions. Quadratures 21

2 Algebraic Interpolation 25
2.1 Existence and Uniqueness of Interpolating Polynomial ........... 25
   2.1.1 The Lagrange Form of Interpolating Polynomial ....... 25
   2.1.2 The Newton Form of Interpolating Polynomial, Divided Differences ........................................... 26
   2.1.3 Comparison of the Lagrange and Newton Forms ....... 31
   2.1.4 Conditioning of the Interpolating Polynomial ....... 32
   2.1.5 On Poor Convergence of Interpolation with Equidistant Nodes .............................................. 33
   Exercises ........................................... 34
2.2 Classical Piecewise Polynomial Interpolation .................. 35
   2.2.1 Definition of Piecewise Polynomial Interpolation ... 35
2.2.2 Formula for the Interpolation Error ................................ 35
2.2.3 Approximation of Derivatives for a Grid Function ............. 38
2.2.4 Estimate of the Unavoidable Error and the Choice of Degree
for Piecewise Polynomial Interpolation ............................ 40
2.2.5 Saturation of Piecewise Polynomial Interpolation .......... 42
Exercises ........................................................................ 42
2.3 Smooth Piecewise Polynomial Interpolation (Splines) .......... 43
2.3.1 Local Interpolation of Smoothness $s$ and Its Properties .... 43
2.3.2 Nonlocal Smooth Piecewise Polynomial Interpolation .... 48
2.3.3 Proof of Theorem 2.11 ........................................... 53
Exercises ........................................................................ 56
2.4 Interpolation of Functions of Two Variables .................... 57
2.4.1 Structured Grids .................................................. 57
2.4.2 Unstructured Grids .............................................. 59
Exercises ........................................................................ 60
3 Trigonometric Interpolation ........................................ 61
3.1 Interpolation of Periodic Functions ................................. 62
3.1.1 An Important Particular Choice of Interpolation Nodes ... 62
3.1.2 Sensitivity of the Interpolating Polynomial to Perturbations
of the Function Values .................................................... 67
3.1.3 Estimate of Interpolation Error ................................ 68
3.1.4 An Alternative Choice of Interpolation Nodes .......... 72
3.2 Interpolation of Functions on an Interval. Relation between Alge-
braic and Trigonometric Interpolation ............................. 73
3.2.1 Periodization ..................................................... 73
3.2.2 Trigonometric Interpolation ................................ 75
3.2.3 Chebyshev Polynomials. Relation between Algebraic and
Trigonometric Interpolation ............................................. 75
3.2.4 Properties of Algebraic Interpolation with Roots of the
Chebyshev Polynomial $T_{n+1}(x)$ as Nodes ...................... 77
3.2.5 An Algorithm for Evaluating the Interpolating Polynomial 78
3.2.6 Algebraic Interpolation with Extrema of the Chebyshev
Polynomial $T_n(x)$ as Nodes ........................................... 79
3.2.7 More on the Lebesgue Constants and Convergence of Inter-
polants ................................................................. 80
Exercises ........................................................................ 89
4 Computation of Definite Integrals. Quadratures .............. 91
4.1 Trapezoidal Rule, Simpson’s Formula, and the Like ........... 91
4.1.1 General Construction of Quadrature Formulae ............ 92
4.1.2 Trapezoidal Rule ................................................ 93
4.1.3 Simpson’s Formula ............................................. 98
Exercises ........................................................................ 102
4.2 Quadrature Formulae with No Saturation. Gaussian Quadratures . 102
### II Systems of Scalar Equations

#### 5 Systems of Linear Algebraic Equations: Direct Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Different Forms of Consistent Linear Systems</td>
<td>120</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Canonical Form of a Linear System</td>
<td>120</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Operator Form</td>
<td>121</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Finite-Difference Dirichlet Problem for the Poisson Equation</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>124</td>
</tr>
<tr>
<td>5.2</td>
<td>Linear Spaces, Norms, and Operators</td>
<td>124</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Normed Spaces</td>
<td>126</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Norm of a Linear Operator</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>131</td>
</tr>
<tr>
<td>5.3</td>
<td>Conditioning of Linear Systems</td>
<td>133</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Condition Number</td>
<td>134</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Characterization of a Linear System by Means of Its Condition Number</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>139</td>
</tr>
<tr>
<td>5.4</td>
<td>Gaussian Elimination and Its Tri-Diagonal Version</td>
<td>140</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Standard Gaussian Elimination</td>
<td>141</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Tri-Diagonal Elimination</td>
<td>145</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Cyclic Tri-Diagonal Elimination</td>
<td>148</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Matrix Interpretation of the Gaussian Elimination. <em>LU</em> Factorization</td>
<td>149</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Cholesky Factorization</td>
<td>153</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Gaussian Elimination with Pivoting</td>
<td>154</td>
</tr>
<tr>
<td>5.4.7</td>
<td>An Algorithm with a Guaranteed Error Estimate</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>156</td>
</tr>
<tr>
<td>5.5</td>
<td>Minimization of Quadratic Functions and Its Relation to Linear Systems</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>159</td>
</tr>
<tr>
<td>5.6</td>
<td>The Method of Conjugate Gradients</td>
<td>159</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Construction of the Method</td>
<td>159</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Flexibility in Specifying the Operator <em>A</em></td>
<td>163</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Computational Complexity</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>163</td>
</tr>
</tbody>
</table>
5.7  Finite Fourier Series ........................................... 164
  5.7.1 Fourier Series for Grid Functions ....................... 165
  5.7.2 Representation of Solution as a Finite Fourier Series .. 168
  5.7.3 Fast Fourier Transform .................................. 169
  Exercises .................................................. 171

6  Iterative Methods for Solving Linear Systems .................. 173
  6.1 Richardson Iterations and the Like ........................ 174
    6.1.1 General Iteration Scheme ............................ 174
    6.1.2 A Necessary and Sufficient Condition for Convergence . 178
    6.1.3 The Richardson Method for $A = A^* > 0$ .............. 181
    6.1.4 Preconditioning .................................... 188
    6.1.5 Scaling ........................................... 192
    Exercises ................................................ 193
  6.2 Chebyshev Iterations and Conjugate Gradients ............... 194
    6.2.1 Chebyshev Iterations ................................ 194
    6.2.2 Conjugate Gradients ................................. 196
    Exercises ................................................ 197
  6.3 Krylov Subspace Iterations .................................. 198
    6.3.1 Definition of Krylov Subspaces ....................... 199
    6.3.2 GMRES ........................................... 201
    Exercises ................................................ 204
  6.4 Multigrid Iterations ....................................... 204
    6.4.1 Idea of the Method .................................. 205
    6.4.2 Description of the Algorithm ........................ 208
    6.4.3 Bibliography Comments .............................. 210
    Exercises ................................................ 210

7  Overdetermined Linear Systems. The Method of Least Squares 211
  7.1 Examples of Problems that Result in Overdetermined Systems . 211
    7.1.1 Processing of Experimental Data. Empirical Formulae . 211
    7.1.2 Improving the Accuracy of Experimental Results by Increasing the Number of Measurements ................. 213
  7.2 Weak Solutions of Full Rank Systems. QR Factorization .... 214
    7.2.1 Existence and Uniqueness of Weak Solutions ........... 214
    7.2.2 Computation of Weak Solutions. QR Factorization .... 217
    7.2.3 Geometric Interpretation of the Method of Least Squares . 220
    7.2.4 Overdetermined Systems in the Operator Form .......... 221
    Exercises ................................................ 222
  7.3 Rank Deficient Systems. Singular Value Decomposition .... 225
    7.3.1 Singular Value Decomposition and Moore-Penrose Pseudo-inverse ........................................ 225
    7.3.2 Minimum Norm Weak Solution ........................ 227
    Exercises ................................................ 229
# Numerical Solution of Nonlinear Equations and Systems

8 Numerical Solution of Nonlinear Equations and Systems  
8.1 Commonly Used Methods of Rootfinding  
8.1.1 The Bisection Method  
8.1.2 The Chord Method  
8.1.3 The Secant Method  
8.1.4 Newton’s Method  
8.2 Fixed Point Iterations  
8.2.1 The Case of One Scalar Equation  
8.2.2 The Case of a System of Equations  
Exercises  
8.3 Newton’s Method  
8.3.1 Newton’s Linearization for One Scalar Equation  
8.3.2 Newton’s Linearization for Systems  
8.3.3 Modified Newton’s Methods  
Exercises  

### III The Method of Finite Differences for the Numerical Solution of Differential Equations

9 Numerical Solution of Ordinary Differential Equations  
9.1 Examples of Finite-Difference Schemes. Convergence  
9.1.1 Examples of Difference Schemes  
9.1.2 Convergent Difference Schemes  
9.1.3 Verification of Convergence for a Difference Scheme  
9.2 Approximation of Continuous Problem by a Difference Scheme. Consistency  
9.2.1 Truncation Error $\delta f^{(h)}$  
9.2.2 Evaluation of the Truncation Error $\delta f^{(h)}$  
9.2.3 Accuracy of Order $h^k$  
9.2.4 Examples  
9.2.5 Replacement of Derivatives by Difference Quotients  
9.2.6 Other Approaches to Constructing Difference Schemes  
Exercises  
9.3 Stability of Finite-Difference Schemes  
9.3.1 Definition of Stability  
9.3.2 The Relation between Consistency, Stability, and Convergence  
9.3.3 Convergent Scheme for an Integral Equation  
9.3.4 The Effect of Rounding  
9.3.5 General Comments. A-stability  
Exercises  
9.4 The Runge-Kutta Methods  
9.4.1 The Runge-Kutta Schemes  
9.4.2 Extension to Systems  
Exercises
9.5 Solution of Boundary Value Problems .............................. 288
  9.5.1 The Shooting Method ........................................ 289
  9.5.2 Tri-Diagonal Elimination .................................. 291
  9.5.3 Newton’s Method ............................................ 291
  Exercises .......................................................... 292

9.6 Saturation of Finite-Difference Methods by Smoothness ........ 293
  Exercises .......................................................... 300

9.7 The Notion of Spectral Methods .................................. 301
  Exercises .......................................................... 306

10 Finite-Difference Schemes for Partial Differential Equations 307
10.1 Key Definitions and Illustrating Examples ...................... 307
  10.1.1 Definition of Convergence ................................ 307
  10.1.2 Definition of Consistency .................................. 309
  10.1.3 Definition of Stability ..................................... 312
  10.1.4 The Courant, Friedrichs, and Lewy Condition ............ 317
  10.1.5 The Mechanism of Instability ............................. 319
  10.1.6 The Kantorovich Theorem .................................. 320
  10.1.7 On the Efficacy of Finite-Difference Schemes ............ 322
  10.1.8 Bibliography Comments ..................................... 323
  Exercises .......................................................... 324

10.2 Construction of Consistent Difference Schemes ............... 327
  10.2.1 Replacement of Derivatives by Difference Quotients ....... 327
  10.2.2 The Method of Undetermined Coefficients ............... 333
  10.2.3 Other Methods. Phase Error ............................... 340
  10.2.4 Predictor-Corrector Schemes ............................... 344
  Exercises .......................................................... 345

10.3 Spectral Stability Criterion for Finite-Difference Cauchy Problems 349
  10.3.1 Stability with Respect to Initial Data .................... 349
  10.3.2 A Necessary Spectral Condition for Stability ............ 350
  10.3.3 Examples .................................................... 352
  10.3.4 Stability in C .............................................. 362
  10.3.5 Sufficiency of the Spectral Stability Condition in $l_2$ 362
  10.3.6 Scalar Equations vs. Systems ............................. 365
  Exercises .......................................................... 367

10.4 Stability for Problems with Variable Coefficients ........... 369
  10.4.1 The Principle of Frozen Coefficients ..................... 369
  10.4.2 Dissipation of Finite-Difference Schemes ............... 372
  Exercises .......................................................... 377

10.5 Stability for Initial Boundary Value Problems ................ 377
  10.5.1 The Babenko-Gelfand Criterion ........................... 377
  10.5.2 Spectra of the Families of Operators. The Godunov-Ryaben’kii Criterion 385
  10.5.3 The Energy Method ......................................... 402
10.5.4 A Necessary and Sufficient Condition of Stability. The Kreiss Criterion ........................................ 409
Exercises .......................................................... 418
10.6 Maximum Principle for the Heat Equation ................. 422
10.6.1 An Explicit Scheme ........................................ 422
10.6.2 An Implicit Scheme ........................................ 425
Exercises .......................................................... 426

11 Discontinuous Solutions and Methods of Their Computation 427
11.1 Differential Form of an Integral Conservation Law .......... 428
11.1.1 Differential Equation in the Case of Smooth Solutions ... 428
11.1.2 The Mechanism of Formation of Discontinuities .......... 429
11.1.3 Condition at the Discontinuity ............................ 431
11.1.4 Generalized Solution of a Differential Problem .......... 433
11.1.5 The Riemann Problem ...................................... 434
Exercises .......................................................... 436
11.2 Construction of Difference Schemes ......................... 436
11.2.1 Artificial Viscosity .......................................... 437
11.2.2 The Method of Characteristics ............................ 438
11.2.3 Conservative Schemes. The Godunov Scheme .......... 439
Exercises .......................................................... 444

12 Discrete Methods for Elliptic Problems 445
12.1 A Simple Finite-Difference Scheme. The Maximum Principle . . 446
12.1.1 Consistency ................................................ 447
12.1.2 Maximum Principle and Stability ........................ 448
12.1.3 Variable Coefficients ..................................... 451
Exercises .......................................................... 452
12.2 The Notion of Finite Elements. Ritz and Galerkin Approximations . 453
12.2.1 Variational Problem ....................................... 454
12.2.2 The Ritz Method ........................................... 458
12.2.3 The Galerkin Method ...................................... 460
12.2.4 An Example of Finite Element Discretization .......... 464
12.2.5 Convergence of Finite Element Approximations ....... 466
Exercises .......................................................... 469

IV The Methods of Boundary Equations for the Numerical Solution of Boundary Value Problems 471
13 Boundary Integral Equations and the Method of Boundary Elements 475
13.1 Reduction of Boundary Value Problems to Integral Equations .... 475
13.2 Discretization of Integral Equations and Boundary Elements .... 479
13.3 The Range of Applicability for Boundary Elements .......... 480
14 Boundary Equations with Projections and the Method of Difference Potentials 483

14.1 Formulation of Model Problems 484
14.1.1 Interior Boundary Value Problem 485
14.1.2 Exterior Boundary Value Problem 485
14.1.3 Problem of Artificial Boundary Conditions 485
14.1.4 Problem of Two Subdomains 486
14.1.5 Problem of Active Shielding 487

14.2 Difference Potentials 488
14.2.1 Auxiliary Difference Problem 488
14.2.2 The Potential $u^+ = P^+ v_γ$ 489
14.2.3 Difference Potential $u^- = P^- v_γ$ 492
14.2.4 Cauchy Type Difference Potential $w^± = P^± v_γ$ 493
14.2.5 Analogy with Classical Cauchy Type Integral 497

14.3 Solution of Model Problems 498
14.3.1 Interior Boundary Value Problem 498
14.3.2 Exterior Boundary Value Problem 500
14.3.3 Problem of Artificial Boundary Conditions 501
14.3.4 Problem of Two Subdomains 501
14.3.5 Problem of Active Shielding 503

14.4 General Remarks 505
14.5 Bibliography Comments 506

List of Figures 507

Referenced Books 509

Referenced Journal Articles 517

Index 521
Preface

This book introduces the key ideas and concepts of numerical analysis. The discussion focuses on how one can represent different mathematical models in a form that enables their efficient study by means of a computer. The material learned from this book can be applied in various contexts that require the use of numerical methods. The general methodology and principles of numerical analysis are illustrated by specific examples of the methods for real analysis, linear algebra, and differential equations. The reason for this particular selection of subjects is that these methods are proven, provide a number of well-known efficient algorithms, and are used for solving different applied problems that are often quite distinct from one another.

The contemplated readership of this book consists of beginning graduate and senior undergraduate students in mathematics, science and engineering. It may also be of interest to working scientists and engineers. The book offers a first mathematical course on the subject of numerical analysis. It is carefully structured and can be read in its entirety, as well as by selected parts. The portions of the text considered more difficult are clearly identified; they can be skipped during the first reading without creating any substantial gaps in the material studied otherwise. In particular, more difficult subjects are discussed in Sections 2.3.1 and 2.3.3, Sections 3.1.3 and 3.2.7, parts of Sections 4.2 and 9.7, Section 10.5, Section 12.2, and Chapter 14.

Hereafter, numerical analysis is interpreted as a mathematical discipline. The basic concepts, such as discretization, error, efficiency, complexity, numerical stability, consistency, convergence, and others, are explained and illustrated in different parts of the book with varying levels of depth using different subject material. Moreover, some ideas and views that are addressed, or at least touched upon in the text, may also draw the attention of more advanced readers. First and foremost, this applies to the key notion of the saturation of numerical methods by smoothness. A given method of approximation is said to be saturated by smoothness if, because of its design, it may stop short of reaching the intrinsic accuracy limit (unavoidable error) determined by the smoothness of the approximated solution and by the discretization parameters. If, conversely, the accuracy of approximation self-adjusts to the smoothness, then the method does not saturate. Examples include algebraic vs. trigonometric interpolation, Newton-Cotes vs. Gaussian quadratures, finite-difference vs. spectral methods for differential equations, etc.

Another advanced subject is an introduction to the method of difference potentials in Chapter 14. This is the first account of difference potentials in the educational literature. The method employs discrete analogues of modified Calderon’s potentials and boundary projection operators. It has been successfully applied to solving a variety of direct and inverse problems in fluids, acoustics, and electromagnetism.

This book covers three semesters of instruction in the framework of a commonly
used curriculum with three credit hours per semester. Three semester-long courses can be designed based on Parts I, II, and III of the book, respectively. Part I includes interpolation of functions and numerical evaluation of definite integrals. Part II covers direct and iterative solution of consistent linear systems, solution of overdetermined linear systems, and solution of nonlinear equations and systems. Part III discusses finite-difference methods for differential equations. The first chapter in this part, Chapter 9, is devoted to ordinary differential equations and serves an introductory purpose. Chapters 10, 11, and 12 cover different aspects of finite-difference approximation for both steady-state and evolution partial differential equations, including rigorous analysis of stability for initial boundary value problems and approximation of the weak solutions for nonlinear conservation laws. Alternatively, for the curricula that introduce numerical differentiation right after the interpolation of functions and quadratures, the material from Chapter 9 can be added to a course based predominantly on Part I of the book.

A rigorous mathematical style is maintained throughout the book, yet very little use is made of the apparatus of functional analysis. This approach makes the book accessible to a much broader audience than only mathematicians and mathematics majors, while not compromising any fundamentals in the field. A thorough explanation of the key ideas in the simplest possible setting is always prioritized over various technicalities and generalizations. All important mathematical results are accompanied by proofs. At the same time, a large number of examples are provided that illustrate how those results apply to the analysis of individual problems.

This book has no objective whatsoever of describing as many different methods and techniques as possible. On the contrary, it treats only a limited number of well-known methodologies, and only for the purpose of exemplifying the most fundamental concepts that unite different branches of the discipline. A number of important results are given as exercises for independent study. Altogether, many exercises supplement the core material; they range from elementary to quite challenging.

Some exercises require computer implementation of the corresponding techniques. However, no substantial emphasis is put on issues related to programming. In other words, any computer implementation serves only as an illustration of the relevant mathematical concepts and does not carry an independent learning objective. For example, it may be useful to have different iteration schemes implemented for a system of linear algebraic equations. By comparing how their convergence rates depend on the condition number, one can subsequently judge the efficiency from a mathematical standpoint. However, other efficiency issues, e.g., runtime efficiency determined by the software and/or computer platform, are not addressed as there is no direct relation between them and the mathematical analysis of numerical methods.

Likewise, no substantial emphasis is put on any specific applications. Indeed, the goal is to clearly and concisely present the key mathematical concepts pertinent to the analysis of numerical methods. This provides a foundation for the subsequent specialized training. Subjects such as computational fluid dynamics, computational acoustics, computational electromagnetism, etc., are very well addressed in the literature. Most corresponding books require some numerical background from the reader, the background of precisely the kind that the current text offers.
Acknowledgments

This book has a Russian language prototype [Rya00] that withstood two editions: in 1994 and in 2000. It serves as the main numerical analysis text at Moscow Institute for Physics and Technology. The authors are most grateful to the rector of the Institute at the time, Academician O. M. Belotserkovskii, who has influenced the original concept of this textbook.

Compared to [Rya00], the current book is completely rewritten. It accommodates the differences that exist between the Russian language culture and the English language culture of mathematics education. Moreover, the current textbook includes a very considerable amount of additional material.

When writing Part III of the book, we exploited the ideas and methods previously developed in [GR64] and [GR87].

When writing Chapter 14, we used the approach of [Rya02, Introduction].

We are indebted to all our colleagues and friends with whom we discussed the subject of teaching the numerical analysis. The book has greatly benefited from all those discussions. In particular, we would like to thank S. Abarbanel, K. Brushlinskii, V. Demchenko, A. Chertock, L. Choudov, L. Demkowicz, A. Ditkowskii, R. Fedorenko, G. Fibich, P. Gremaud, T. Hagstrom, V. Ivanov, C. Kelley, D. Keyes, A. Kholodov, V. Kosarev, A. Kurganov, C. Meyer, N. Onofrieva, I. Petrov, V. Pirogov, L. Stryagina, E. Tadmor, E. Turkel, S. Utyuzhnikov, and A. Zabrodin. We also remember the late K. Babenko, O. Lokutsievskii, and Yu. Radvogin.

We would like to specially thank Alexandre Chorin of UC Berkeley and David Gottlieb of Brown University who read the manuscript prior to publication.

A crucial and painstaking task of proofreading the manuscript was performed by the students who took classes on the subject of this book when it was in preparation. We are most grateful to L. Bilbro, A. Constantinescu, S. Ernsberger, S. Grove, A. Peterson, H. Qasimov, A. Sampat, and W. Weiselqust. All the imperfections still remaining are a sole responsibility of the authors.

It is also a pleasure for the second author to thank Arje Nachman and Richard Albanese of the US Air Force for their consistent support of the second author’s research work during and beyond the period of time when the book was written.

And last, but not least, we are very grateful to the CRC Press Editor, Sunil Nair, as well as to the company staff in London and in Florida, for their advice and assistance.

Finally, our deepest thanks go to our families for their patience and understanding without which this book project would have never been completed.

V. Ryaben’kii, Moscow, Russia
S. Tsynkov, Raleigh, USA

August 2006