A minimum norm weak (generalized) solution of the overdetermined system (7.27) is the vector \(\hat{x} \in \mathbb{R}^n \) that minimizes \(\Phi(x) \), i.e., \(\forall x \in \mathbb{R}^n, \Phi(x) \leq \Phi(\hat{x}) \), and also such that if there is another \(x \in \mathbb{R}^n \), \(\Phi(x) = \Phi(\hat{x}) \), then \(\|x\| \geq \|\hat{x}\| \).

Note that the minimum norm weak solution introduced according to Definition 7.3 may exhibit strong sensitivity to the perturbations of the matrix \(A \) in the case when these perturbations change the rank of the matrix, see the example given in Exercise 2 after the section.

REMARK 7.6 Definition 7.3 can also be applied to the case of a full rank matrix \(A \), \(\text{rank} A = n \). Then it reduces to Definition 7.1 (for \(B = I \)), because according to Theorem 7.2 a unique least squares weak solution exists for a full rank overdetermined system, and consequently, the Euclidean norm of this solution is minimum.

THEOREM 7.3

Let \(A \) be an \(m \times n \) matrix with real entries, \(m \geq n \), and \(\text{rank} A = r < n \). There is a unique weak solution of system (7.27) in the sense of Definition 7.3. This solution is given by the formula:

\[
\hat{x} = A^+ f,
\]

where \(A^+ \) is the Moore-Penrose pseudoinverse of \(A \) introduced in Definition 7.2.

PROOF

Using singular value decomposition, represent the system matrix of (7.27) in the form: \(A = U \Sigma W^* \). Also define \(y = W^* x \). Then, according to formula (7.32), we can write:

\[
\Phi(x) = (U\Sigma W^* x - f, U\Sigma W^* x - f)(m) = (U\Sigma y - f, U\Sigma y - f)(m)
\]

\[
= (\Sigma y - U^* f, \Sigma y - U^* f)(m) = \|\Sigma y - U^* f\|_2^2,
\]

and we need to find the vector \(\hat{y} \in \mathbb{R}^n \) such that \(\forall y \in \mathbb{R}^n, \|\Sigma \hat{y} - U^* f\|_2^2 \leq \|\Sigma y - U^* f\|_2^2 \). This vector \(\hat{y} \) must also have a minimum Euclidean norm, because the matrix \(W \) is orthogonal and since \(y = W^* x \) we have \(\|y\|_2 = \|x\|_2 \).

Next, recall that as \(\text{rank} A = r \), the matrix \(A \) has precisely \(r \) non-zero singular values \(\sigma_i \). Then we have:

\[
\|\Sigma y - U^* f\|_2^2 = \sum_{i=1}^r |\sigma_i y_i - (U^* f)_i|^2 + \sum_{i=r+1}^m |(U^* f)_i|^2,
\]

expression (7.34) attains its minimum value when the first sum on the right-hand side is equal to zero, because the second sum simply does not depend