Identifiability of Phylogenetic Mixture Models

Elizabeth Allman, Sonja Petrović, John Rhodes, and Seth Sullivant

U. of Alaska—Fairbanks, U. of Illinois—Chicago, and NCSU

April 3, 2009
The Main Results: Two-tree Mixtures

Theorem

The tree parameters of the phylogenetic mixture model $\mathcal{M}_{T_1} * \mathcal{M}_{T_2}$ are generically identifiable under the Jukes-Cantor and Kimura 2-parameter models if T_1, T_2 are trivalent with $n \geq 4$ leaves.

Theorem*

The continuous parameters of the phylogenetic mixture model $\mathcal{M}_{T_1} * \mathcal{M}_{T_2}$ are generically identifiable under the Jukes-Cantor and Kimura 2-parameter models if T_1, T_2 are trivalent with $n \geq 5$ leaves.
Outline

1. Phylogenetic Mixture Models
2. Group-based Phylogenetic Models
3. The Identifiability Problem
4. Proof of Tree Identifiability
 1. Quartets
 2. Sextets
5. Proof* of Parameter Identifiability
6. Some Mathematical Surprises
Let T be a trivalent tree with n leaves. Leaves are labeled by $[n] := \{1, 2, 3, \ldots, n\}$.
Associated to each edge of tree e is a Markov (structured) transition matrix M_e.
Once we specify T, and the M_e, get a probability distribution of characters at the leaves of the tree.

$$Prob(i, j, k) = \sum_{l=1}^{4} \sum_{m=1}^{4} r_l M_1(l, m) M_2(m, i) M_3(m, j) M_4(l, k)$$
Think of phylogenetic model as a map

\[\phi_T : \Theta \subseteq \mathbb{R}^k \rightarrow \Delta_{4n} \]

Given by polynomials:
\[\mathcal{M}_T := \text{im}\phi_T = \phi_T(\Theta), \] is the phylogenetic model.
Suppose there are \(k \) classes of sites in the genome. Each class \(j \in [k] \) evolved according to tree \(T_j \) on \(n \) leaves. Assuming that the classes are hidden, we observe a probability distribution of the form:

\[
\phi_{T_1, \ldots, T_k} (\pi, \{ M_e \}) = \pi_1 \cdot \phi_{T_1} (\{ M_e^1 \}) + \pi_2 \cdot \phi_{T_2} (\{ M_e^2 \}) + \cdots + \pi_k \cdot \phi_{T_k} (\{ M_e^k \})
\]

where \(\pi_j \) is the relative proportion of sites of class \(j \).

Definition

Let \(T_1, \ldots, T_k \) be trees with \(n \) leaves. The phylogenetic mixture model

\[
M_{T_1} \ast M_{T_2} \ast \cdots \ast M_{T_k} = \left\{ \sum_{j=1}^{k} \pi_j p^j : \pi_j \geq 0, \sum \pi_j = 1, p^j \in M_{T_j} \right\}.
\]
Why Mixture Models?

- Differing gene tree topologies
- Could explain evolution with recombination
For remainder we focus on group-based models. Phylogenetic models with structured transition matrices.

\[
\begin{pmatrix}
\alpha & \beta \\
\beta & \alpha
\end{pmatrix}
\begin{pmatrix}
\alpha & \beta & \beta & \beta \\
\beta & \alpha & \beta & \beta \\
\beta & \beta & \alpha & \beta \\
\beta & \beta & \beta & \alpha
\end{pmatrix}
\begin{pmatrix}
\alpha & \beta & \gamma & \gamma \\
\beta & \alpha & \gamma & \gamma \\
\gamma & \gamma & \alpha & \beta \\
\gamma & \gamma & \beta & \alpha
\end{pmatrix}
\begin{pmatrix}
\alpha & \beta & \gamma & \delta \\
\beta & \alpha & \delta & \gamma \\
\gamma & \delta & \alpha & \beta \\
\delta & \gamma & \beta & \alpha
\end{pmatrix}
\]

Cavender-Farris-Neyman (CFN), Jukes-Cantor (JC), Kimura 2-Parameter (K2P), Kimura 3-Parameter (K3P)
Transition structure is governed by a finite Abelian group G, such that

\[
M_e(g, h) = f_e(g - h).
\]

Theorem (Evans-Speed 1993, Hendy-Penny 1993)

Group-based models can be diagonalized by means of the discrete Fourier transform over G (Hadamard conjugation). In the Fourier coordinates, group-based models are toric varieties.
Fourier Coordinates

For each split $A|B$ in tree introduce a set of Fourier parameters

$$\{a_g^{A|B} : g \in G\}.$$

Theorem (Evans-Speed 1993, Hendy-Penny 1993)

In the Fourier coordinates, a group-based phylogenetic model is given parameterically by:

$$q_{g_1, \ldots, g_n} = \begin{cases} \prod_{A|B \in \Sigma(T)} a_{g_1}^{A|B} \sum_{a \in A} g_a & \text{if } g_1 + \cdots + g_n = 0 \\ 0 & \text{if } g_1 + \cdots + g_n \neq 0 \end{cases}$$

In the JC, K2P, K3P, we take $G = \mathbb{Z}_2 \times \mathbb{Z}_2 = \{A, C, G, T\}$.

In the K2P model, we have $a_G^{A|B} = a_T^{A|B}$ for all $A|B$.

In the JC model, we have $a_C^{A|B} = a_G^{A|B} = a_T^{A|B}$ for all $A|B$.
Doodles for Group-Based Models

\[q_{CCTGC} = a_C^1 a_C^2 a_T^3 a_G^4 a_C^5 a_A^{1|345} a_T^{123|45} \]

\[q_{CGTA} q_{ACTG} = q_{CGCG} q_{ATTA} \]
The Identifiability Problem

Definition

The tree parameters T_1, \ldots, T_k in a k-class phylogenetic mixture model are **identifiable** if for all

$$p \in \mathcal{M}_{T_1} \ast \cdots \ast \mathcal{M}_{T_k}$$

there does not exist another set of k trees T'_1, \ldots, T'_k such that

$$p \in \mathcal{M}_{T'_1} \ast \cdots \ast \mathcal{M}_{T'_k}.$$
Definition

The tree parameters in a k-class phylogenetic mixture model are \textbf{generically identifiable} if for all nonequal multisets T_1, \ldots, T_k, and T'_1, \ldots, T'_k,

$$\dim(\mathcal{M}_{T_1} \ast \cdots \ast \mathcal{M}_{T_k} \cap \mathcal{M}_{T'_1} \ast \cdots \ast \mathcal{M}_{T'_k}) < \dim(\mathcal{M}_{T_1} \ast \cdots \ast \mathcal{M}_{T_k}).$$
Definition

Fix trees T_1, \ldots, T_k on n leaves. The continuous parameters of phylogenetic mixture model are **generically identifiable** if ϕ_{T_1, \ldots, T_k} is one-to-one (off of a set of measure zero (up to label swapping)).
Identifiability Results:
- Allman and Rhodes (2006) $T_1 = \ldots = T_k$, $k < n$.
- Stefankovic and Vigoda (2007) $T_1 = \ldots = T_k$, JC, K2P
- Matsen, Mossel, and Steel (2008)

Non-Identifiability Results:
- Matsen and Steel (2007)
- Stefankovic and Vigoda (2007)
- Mossel and Vigoda (2005)
Proposition

Let \mathcal{M}_0 and \mathcal{M}_1 be two algebraic models. If there exist polynomials f_0 and f_1 such that

$$f_i(p) = 0 \text{ for all } p \in \mathcal{M}_i, \text{ and } f_i(p) \neq 0 \text{ for some } p \in \mathcal{M}_{1-i}, \text{ then}$$

$$\dim(\mathcal{M}_0 \cap \mathcal{M}_1) < \min(\dim \mathcal{M}_0, \dim \mathcal{M}_1).$$

Proposition

Let \mathcal{M}_0 and \mathcal{M}_1 be two algebraic models. If there is a polynomial f_0 such that

$$f_0(p) = 0 \text{ for all } p \in \mathcal{M}_0, \text{ and } f_0(p) \neq 0 \text{ for some } p \in \mathcal{M}_1, \text{ and}$$

$$\dim \mathcal{M}_1 \leq \dim \mathcal{M}_0 \text{ then}$$

$$\dim(\mathcal{M}_0 \cap \mathcal{M}_1) < \min(\dim \mathcal{M}_0, \dim \mathcal{M}_1).$$
Proof of Tree Parameter Identifiability

Theorem

The tree parameters of the phylogenetic mixture model $\mathcal{M}_{T_1} \ast \mathcal{M}_{T_2}$ are generically identifiable under the Jukes-Cantor and Kimura 2-parameter models if T_1, T_2 are trivalent with $n \geq 4$ leaves.

Strategy: Prove theorem for quartets $n = 4$, then lift to arbitrary sized trees.
Lemma (Steel-Xu, Hendy-Penny)

Under JC and K2P, if $T_1 \neq T_2$ trivalent n-leaf trees, there is a linear invariant ℓ_{T_1} such that

$$\ell_{T_1}(q) = 0 \text{ for all } q \in \mathcal{M}_{T_1} \text{ and }$$

$$\ell_{T_1}(q) \neq 0 \text{ for some } q \in \mathcal{M}_{T_2}.$$

Corollary

Under JC and K2P, if $T_1 \neq T_2$ trivalent n-leaf trees, then

$$\mathcal{M}_{T_2} \not\subseteq \mathcal{M}_{T_1} \ast \mathcal{M}_{T_1}.$$

Lemma

Under JC and K2P, if T is a trivalent tree with 4 leaves, $\mathcal{M}_T \ast \mathcal{M}_T$ has the expected dimension.
Proposition

Let $T_1 = \{12|34\}$, $T_2 = \{14|23\}$, $T_3 = \{13|24\}$. Then

$$\ell(q) = q_{GGGG} + q_{GTGT} - q_{GGTT} - q_{GTTG}$$

satisfies $\ell(q) = 0$ for all $q \in \mathcal{M}_{T_1} \ast \mathcal{M}_{T_2}$ but $\ell(q) \neq 0$ for some $q \in \mathcal{M}_{T_3}$ for the JC and K2P models.

Corollary

Tree parameter identifiability holds for $n = 4$.

If $K \subseteq [n]$, let $T|_K$ be the induced tree with leaf set K.

Corollary

Let T_1, T_2, T_3, T_4 be n leaf trivalent trees. Suppose that there is a four element set $Q \subseteq [n]$ such that

$$\{T_1|_Q, T_2|_Q\} \neq \{T_3|_Q, T_4|_Q\}$$. Then

$$\dim (\mathcal{M}_{T_1} \ast \mathcal{M}_{T_2} \cap \mathcal{M}_{T_3} \ast \mathcal{M}_{T_4}) < \dim (\mathcal{M}_{T_1} \ast \mathcal{M}_{T_2})$$.
Proposition

There are no quartet-matched pairs of trees with 5 leaves. The only pair of quartet-matched pairs of trees on 6 leaves are:

\[
\begin{align*}
T_1 & : 1 \rightarrow 3 \rightarrow 4 \rightarrow 5 \\
T_2 & : 1 \rightarrow 2 \rightarrow 5 \rightarrow 4 \\
T_3 & : 1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \\
T_4 & : 1 \rightarrow 3 \rightarrow 5 \rightarrow 6
\end{align*}
\]

Proposition

There are linear invariants that distinguish \(T_1, T_2\) from \(T_3, T_4\).

Theorem (Matsen, Mossel, Steel 2007)

If two-tree mixtures are identifiable for trivalent trees with \(n = 6\) trees, they are identifiable for all trees with \(n \geq 6\) leaves.
The continuous parameters of the phylogenetic mixture model \(\mathcal{M}_{T_1} \times \mathcal{M}_{T_2} \) are generically identifiable under the Jukes-Cantor and Kimura 2-parameter models if \(T_1, T_2 \) are trivalent with \(n \geq 5 \) leaves.

\[
\begin{pmatrix}
\alpha & \beta & \beta & \beta \\
\beta & \alpha & \beta & \beta \\
\beta & \beta & \alpha & \beta \\
\beta & \beta & \beta & \alpha
\end{pmatrix} \quad \begin{pmatrix}
\alpha & \beta & \gamma & \gamma \\
\beta & \alpha & \gamma & \gamma \\
\gamma & \gamma & \alpha & \beta \\
\gamma & \gamma & \beta & \alpha
\end{pmatrix}
\]

Definition

Theorem* means that the result holds with high probability.
Proposition

Let $\phi : \mathbb{C}^d \rightarrow \mathbb{C}^m$ be a rational map. Then there is a Zariski open set $\Theta \subseteq \mathbb{C}^d$, such that $\#\phi^{-1}(\phi(\theta))$ is constant over Θ.

1. So to prove* the Theorem* for a particular size tree, generate random rational parameter choices θ and then symbolically solve the simultaneous polynomial system

$$\phi(t) = \phi(\theta)$$

and hope for one solution.

2. We check this using software SINGULAR, for JC and K2P on 4 and 5 leaf trees.

3. Recovering parameters uniquely on quartets \implies recover edge lengths \implies recover parameters on arbitrary sized trees.
Why \(n = 5 \) in Theorem*?

Proposition*

For \(T \) a four leaf tree under the Jukes-Cantor model, the continuous parameters in \(\mathcal{M}_T \ast \mathcal{M}_T \) are not generically identifiable. The map \(\phi_{T,T} \) is generically 6-to-1 (up to label swapping).

For biologically relevant parameters, we observed between 1 and 4 biologically relevant preimages.
Theorem

For the Jukes-Cantor model

\[\overline{\mathcal{M}_{T_2}} \subseteq \overline{\mathcal{M}_{T_1} \ast \mathcal{M}_{T_3}}. \]

Can the closure be dropped; i.e. does it happen for biologically meaningful parameter values?
Future Directions

- Develop methods to remove the * from a Theorem*
- Deal with the other group-based models (CFN, K3P)
- Beyond group-based models, GTR, GMM
- Beyond 2-tree mixtures to k-tree mixtures