Phylogenetic Algebraic Geometry

Seth Sullivant

North Carolina State University

January 4, 2012
Phylogenetics

Problem
Given a collection of species, find the tree that explains their history.

Data consists of aligned DNA sequences from homologous genes

Human: \dots ACCGTGCAACGTGAACGA\dots
Chimp: \dots ACCTTGGAAGGTAAACGA\dots
Gorilla: \dots ACCGTGCAACGTAAACTA\dots
Use a probabilistic model of mutations
Parameters for the model are the combinatorial tree T, and rate parameters for mutations on each edge
Models give a probability for observing a particular aligned collection of DNA sequences

Human: ACCTGCAACGTGAACGA
Chimp: ACGTTGCAAGGTAAACGA
Gorilla: ACCGTGCAACGTAAACTA

Assuming site independence, data is summarized by empirical distribution of columns in the alignment.
e.g. $\hat{p}(AAA) = \frac{5}{18}$, $\hat{p}(CGC) = \frac{2}{18}$, etc.
Use empirical distribution and test statistic to find tree best explaining data
Assuming site independence:

Phylogenetic Model is a latent class graphical model

Vertex $v \in T$ gives a random variable $X_v \in \{A, C, G, T\}$

All random variables corresponding to internal nodes are latent

$$P(x_1, x_2, x_3) = \sum_{y_1} \sum_{y_2} P(y_1)P(y_2|y_1)P(x_1|y_1)P(x_2|y_2)P(x_3|y_2)$$
Phylogenetic Models

- Assuming site independence:
- Phylogenetic Model is a latent class graphical model
- Vertex $v \in T$ gives a random variable $X_v \in \{A, C, G, T\}$
- All random variables corresponding to internal nodes are latent

$$p_{i_1,i_2,i_3} = \sum_{j_1} \sum_{j_2} \pi_{j_1} a_{j_2,j_1} b_{i_1,j_1} c_{i_2,j_2} d_{i_3,j_2}$$
Once we fix a tree T and model structure, we get a map
$\phi^T : \Theta \rightarrow \mathbb{R}^{4^n}$.

$\Theta \subseteq \mathbb{R}^d$ is a parameter space of numerical parameters (transition matrices associated to each edge).

The map ϕ^T is given by polynomial functions of the parameters.

For each $i_1 \cdots i_n \in \{A, C, G, T\}^n$, $\phi^T_{i_1 \cdots i_n}(\theta)$ gives the probability of the column $(i_1, \ldots, i_n)'$ in the alignment for the particular parameter choice θ.

$$
\phi^T_{i_1 i_2 i_3}(\pi, a, b, c, d) = \sum_{j_1} \sum_{j_2} \pi_{j_1} a_{j_2, j_1} b_{i_1, j_1} c_{i_2, j_2} d_{i_3, j_2}
$$

The phylogenetic model is the set $\mathcal{M}_T = \phi^T(\Theta) \subseteq \mathbb{R}^{4^n}$.
Let $\mathbb{R}[p] := \mathbb{R}[p_{i_1 \cdots i_n} : i_1 \cdots i_n \in \{A, C, G, T\}^n]$.

Definition

Let

$$I_T := \langle f \in \mathbb{R}[p] : f(p) = 0 \text{ for all } p \in \mathcal{M}_T \rangle \subseteq \mathbb{R}[p].$$

I_T is the ideal of phylogenetic invariants of T.

Let

$$V_T := \{p \in \mathbb{R}^{4n} : f(p) = 0 \text{ for all } f \in I_T\}.$$

V_T is the phylogenetic variety of T.

- Note that $\mathcal{M}_T \subset V_T$.
- Since \mathcal{M}_T is image of a polynomial map $\dim \mathcal{M}_T = \dim V_T$.
\[p_{lmno} = \sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{k=1}^{4} \pi_{i} a_{ij} b_{ik} c_{j} d_{jm} e_{kn} f_{ko} \]
\[p_{lmno} = \sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{k=1}^{4} \pi_i a_{ij} b_{ik} c_{jl} d_{jm} e_{kn} f_{ko} \]
\[p_{lmno} = \sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{k=1}^{4} \pi_i a_{ij} b_{ik} c_j d_{jm} e_{kn} f_{ko} \]

\[
\left(\sum_{j=1}^{4} a_{ij} c_j d_{jm} \right) \cdot \left(\sum_{k=1}^{4} b_{ik} e_{kn} f_{ko} \right)
\]
\[p_{lmno} = \sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{k=1}^{4} \pi_i a_{ij} b_{ik} c_{jl} d_{jm} e_{kn} f_{ko} \]

\[= \sum_{i=1}^{4} \pi_i \left(\left(\sum_{j=1}^{4} a_{ij} c_{jl} d_{jm} \right) \cdot \left(\sum_{k=1}^{4} b_{ik} e_{kn} f_{ko} \right) \right) \]
\[p_{lmno} = \sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{k=1}^{4} \pi_i a_{ij} b_{ik} c_{jl} d_{jm} e_{kn} f_{ko} \]

\[= \sum_{i=1}^{4} \pi_i \left(\left(\sum_{j=1}^{4} a_{ij} c_{jl} d_{jm} \right) \cdot \left(\sum_{k=1}^{4} b_{ik} e_{kn} f_{ko} \right) \right) \]

\[\implies \text{rank} \begin{pmatrix} p_{1111} & p_{1112} & \cdots & p_{1144} \\ p_{1211} & p_{1212} & \cdots & p_{1244} \\ \vdots & \vdots & \ddots & \vdots \\ p_{4411} & p_{4412} & \cdots & p_{4444} \end{pmatrix} \leq 4 \]
A split of a set is a bipartition $A \mid B$. A split $A \mid B$ of the leaves of a tree T is valid for T if the induced trees $T|_A$ and $T|_B$ do not intersect.

Valid: $12 \mid 34$
Not Valid: $13 \mid 24$
2-way Flattenings and Matrix Ranks

\[p_{ijkl} = P(X_1 = i, X_2 = j, X_3 = k, X_4 = l) \]

\[
\text{Flat}_{12|34}(P) = \begin{pmatrix}
p_{AAAA} & p_{AAAC} & p_{AAAG} & \cdots & p_{AATT} \\
p_{ACAA} & p_{ACAC} & p_{ACAG} & \cdots & p_{ACTT} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
p_{TTAA} & p_{TTAC} & p_{TTAG} & \cdots & p_{TTTT}
\end{pmatrix}
\]

Proposition

Let \(P \in \mathcal{M}_T \).

- If \(A|B \) is a valid split for \(T \), then \(\text{rank}(\text{Flat}_{A|B}(P)) \leq 4 \).
 Invariants in \(I_T \) are subdeterminants of \(\text{Flat}_{A|B}(P) \).

- If \(C|D \) is not a valid split for \(T \), then generically \(\text{rank}(\text{Flat}_{C|D}(P)) > 4 \).
Phylogenetic Algebraic Geometry is the study of the phylogenetic varieties and ideals V_T and I_T.

- Using Phylogenetic Invariants to Reconstruct Trees
- Identifiability of Phylogenetic Models
- Cool Math—For Its Own Sake
Definition

A phylogenetic invariant $f \in I_T$ is **phylogenetically informative** if there is some other tree T' such that $f \notin I_{T'}$.

Evaluate phylogenetically informative phylogenetic invariants at empirical distribution \hat{p} to reconstruct phylogenetic trees

Proposition

For each n-leaf trivalent tree T, let $F_T \subseteq I_T$ be a set of phylogenetic invariants such that, for each $T' \neq T$, there is an $f \in F_T$, such that $f' \notin I_{T'}$.

Let $f_T := \sum_{f \in F_T} |f|$. Then for generic $p \in \bigcup M_T$, $f_T(p) = 0$ if and only if $p \in M_T$.

HOWEVER... Huelsenbeck only used linear invariants.

Casanellas, Fernandez-Sanchez (2006) redid these simulations using a generating set of the phylogenetic ideal I_T. Phylogenetic invariants become comparable to other methods.

For the particular model studied in Casanellas, Fernandez-Sanchez (2006) for a tree with 4 leaves, the ideal I_T has 8002 generators.

$$f_T := \sum_{f \in \mathcal{F}_T} |f|$$

is a sum of 8002 terms.

Major work to overcome combinatorial explosion for larger trees.
A parametric statistical model is **identifiable** if it gives 1-to-1 map from parameters to probability distributions.

- “Is it possible to infer the parameters of the model from data?”
- Identifiability guarantees consistency of statistical methods (ML)
- Two types of parameters to consider for phylogenetic models:
 - Numerical parameters (transition matrices)
 - Tree parameter (combinatorial type of tree)
Definition

The tree parameter T in a phylogenetic model is identifiable if for all $p \in \mathcal{M}_T$

there does not exist another $T' \neq T$ such that $p \in \mathcal{M}_{T'}$.
Generic Identifiability

Definition

The tree parameter in a phylogenetic model is *generically identifiable* if for all n-leaf trees with $T \neq T'$,

$$\dim(\mathcal{M}_T \cap \mathcal{M}_{T'}) < \min(\dim(\mathcal{M}_T), \dim(\mathcal{M}_{T'})).$$
Proposition

Let \mathcal{M}_0 and \mathcal{M}_1 be two algebraic models. If there exist phylogenetic invariants f_0 and f_1 such that

$$f_i(p) = 0 \text{ for all } p \in \mathcal{M}_i, \text{ and } f_i(q) \neq 0 \text{ for some } q \in \mathcal{M}_{1-i}, \text{ then}$$

$$\dim(\mathcal{M}_0 \cap \mathcal{M}_1) < \min(\dim \mathcal{M}_0, \dim \mathcal{M}_1).$$
Phylogenetic Models are Identifiable

Theorem

The tree parameter of phylogenetic models is generically identifiable.

Proof.

- Edge flattening invariants can detect which splits are implied by a specific distribution in \mathcal{M}_T.
- The splits in T uniquely determine T.
Basic phylogenetic model assume site independence

- This assumption is not accurate within a single gene
 - Some sites more important: unlikely to change

Tree structure may vary across genes

Leads to mixture models for different classes of sites

\[M(T, r) \] denotes a same tree mixture model with underlying tree \(T \) and \(r \) classes of sites
Theorem (Rhodes-Sullivant 2011)

The tree and numerical parameters in a r-class, same tree phylogenetic mixture model on n-leaf trivalent trees are \textit{generically identifiable}, if $r < 4^{\lceil n/4 \rceil}$.

Proof Ideas.

- Phylogenetic invariants from flattenings
- Tensor rank (Kruskal’s Theorem) [Allman-Matias-Rhodes 2009]
- Elementary tree combinatorics
- Solving tree and numerical parameter identifiability at the same time
Phylogenetic Varieties– What are They?

Question
Phylogenetic algebraic geometry is filled with interesting varieties and ideals. Are they “familiar” objects from classical algebraic geometry?

Definition
The **Cavender-Farris-Neyman** model (CFN) is the phylogenetic model where each random variable has two states \(\{ R, Y \} \), or \(\{ 0, 1 \} \), and the Markov transition matrix is symmetric.

\[
\begin{pmatrix}
1 - a_e & a_e \\
a_e & 1 - a_e
\end{pmatrix}
\]
Consider binary states in CFN as \(\{0, 1\} = \mathbb{Z}/2\mathbb{Z} \).

Transitions probabilities satisfy \(\text{Prob}(X = g \mid Y = h) = f(g + h) \).

This means that the formula for \(\text{Prob}(X_1 = g_1, \ldots, X_n = g_n) \) is a convolution (over \((\mathbb{Z}/2\mathbb{Z})^n \)).

Apply discrete Fourier transform to turn convolution into a product.

\[\text{Theorem (Hendy-Penny 1993, Evans-Speed 1993)} \]

\textbf{In the Fourier coordinates, the CFN model is parametrized by monomial functions in terms of the Fourier parameters. In particular, the CFN model is a toric variety.}
Theorem (Sturmfels-Sullivant 2005)

For any tree T, the toric ideal I_T for the CFN model is generated by degree 2 determinantal equations.

Fourier coordinates:

$q_{lmno} = \sum_{r,s,t,u \in \{0,1\}} (-1)^{rl+sm+tn+uo} p_{rstu}$

I_T generated by 2×2 minors of:

$$
\begin{pmatrix}
q_{0000} & q_{0011} \\
q_{1100} & q_{1111}
\end{pmatrix},
\begin{pmatrix}
q_{0001} & q_{0010} \\
q_{1001} & q_{1010}
\end{pmatrix},
\begin{pmatrix}
q_{0100} & q_{0111} \\
q_{1100} & q_{1111}
\end{pmatrix},
\begin{pmatrix}
q_{0000} & q_{0010} \\
q_{0100} & q_{0111}
\end{pmatrix},
\begin{pmatrix}
q_{0001} & q_{0111} \\
q_{1001} & q_{1011}
\end{pmatrix},
\begin{pmatrix}
q_{0100} & q_{1001} \\
q_{1010} & q_{1101}
\end{pmatrix}
$$
Buczynska-Wisniewski Theorem

Definition
For graded \mathbb{K}-algebra $R = \bigoplus_{t \in \mathbb{N}} R_t$, its Hilbert function is

$$\text{Hilb}_R(t) = \dim_{\mathbb{K}} R_t.$$

For large $t \gg 0$, $\text{Hilb}_R(t)$ equals a polynomial: the Hilbert polynomial. The Hilbert polynomial of a projective variety V is the Hilbert polynomial of the homogeneous coordinate ring $\mathbb{K}[p]/I(V)$.

Theorem (Buczynska-Wisniewski 2007)
For any trivalent tree T with n leaves, under the CFN model the phylogenetic varieties V_T have the same Hilbert polynomial.
The Hilbert Scheme

Definition

The Hilbert scheme is a quasi-projective scheme parametrizing all ideals in $\mathbb{K}[p]$ with a given fixed Hilbert polynomial.

- The BW theorem was proven by combinatorially shifting T to another tree T'', which preserves the Hilbert function.
- These are deformation/degeneration steps in the Hilbert scheme.
Theorem (Sturmfels-Xu 2010)

Let T be any trivalent tree with n leaves. Then $\mathbb{K}[p]/I_T$ is a flat degeneration of the Cox-Nagata ring of the blow-up of \mathbb{P}^{n-3} in n points:

$$\text{Cox} \left(\text{Bl}_n \mathbb{P}^{n-3} \right)$$

Proof Sketch.

- Castravet-Tevelev Theorem on finite generation of $\text{Cox} \left(\text{Bl}_n \mathbb{P}^{n-3} \right)$, and connection to Hilbert’s 14th problem.
- Verlinde formula from mathematical physics (which is the multigraded Hilbert function common to all rings $\mathbb{K}[p]/I_T$).
- SAGBI degeneration.

- Generalized to arbitrary genus (and arbitrary trivalent graphs) in [Manon 2009]
 Phylogenetic models are fundamentally algebraic-geometric objects.

Algebraic perspective is useful for:
- Developing new construction algorithms
- Proving theorems about identifiability (currently best available for mixture models)

Phylogenetics motivates lots of interesting new mathematics

Long way to go: Your Help Needed!
References

C. Manon. The algebra of conformal blocks, 2009. 0910.0577

J. Rhodes, S. Sullivant. Identifiability of large phylogenetic mixture models. To appear *Bulletin of Mathematical Biology, 2011.1011.4134*
