A lifelong model for the female reproductive cycle with an antimüllerian hormone treatment to delay menopause

Alison Margolskeea, James F. Selgradeb,*

a Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
b Department of Mathematics and Biomathematics Program, Box 8205, North Carolina State University, Raleigh, NC 27695, USA

HIGHLIGHTS

\begin{itemize}
 \item Hormonal control of the menstrual cycle is modeled from age 20 to menopause.
 \item The model predicts changes in follicle numbers and reproductive hormones due to aging.
 \item Hormonal treatments are tested which may delay menopause.
 \item The effects of AMH agonists and antagonists are investigated using model simulations.
 \item An \textit{ad hoc} procedure is presented to estimate model parameters.
\end{itemize}

ARTICLE INFO

Article history:
Received 22 May 2012
Received in revised form 7 February 2013
Accepted 14 February 2013
Available online 26 February 2013

Keywords:
Menstrual cycle
Primordial follicle
Parameter identification

ABSTRACT

A system of 16 non-linear, delay differential equations with 66 parameters is developed to model hormonal regulation of the menstrual cycle of a woman from age 20 to 51. This mechanistic model predicts changes in follicle numbers and reproductive hormones that naturally occur over that time span. In particular, the model illustrates the decline in the pool of primordial follicles from age 20 to menopause as reported in the biological literature. Also, model simulations exhibit a decrease in antimüllerian hormone (AMH) and inhibin B and an increase in FSH with age corresponding to the experimental data. Model simulations using the administration of exogenous AMH show that the transfer of non-growing primordial follicles to the active state can be slowed enough to provide more follicles for development later in life and to cause a delay in the onset of menopause as measured by the number of primordial follicles remaining in the ovaries. Other effects of AMH agonists and antagonists are investigated in the setting of this model.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Regulation of the reproductive cycle in adult women involves hormones produced by the hypothalamic-pituitary-ovarian axis (see Fig. 1). The pituitary, prompted by signals from the hypothalamus, secretes follicle stimulating hormone (FSH) and luteinizing hormone (LH) which control ovarian follicle development and ovulation (Yen, 1991). The ovaries produce estradiol (E\textsubscript{2}), progesterone (P\textsubscript{4}), inhibin A (InhA) and inhibin B (InhB) which affect the synthesis and release of FSH and LH (Karsch et al., 1973). The ovaries also produce antimüllerian hormone (AMH) which affects early follicular development (Skinner, 2005; Durlinger et al., 2002).

As a woman ages, her ability to produce offspring decreases because of decreasing follicle numbers and changes in reproductive hormones (Broekmans et al., 2009). Peak fertility occurs between the ages of 20 and 30 (Soules et al., 2001). By the average age of 41, a woman is considered infertile because conception often takes longer than 12 month (Broekmans et al., 2009). However, in North America and Europe more women are postponing child-bearing until their 30’s and must deal with the consequences of reduced natural fertility. A mathematical model for hormonal regulation of the menstrual cycle throughout a woman’s reproductive life would be useful for studying age-related changes in menstrual cyclicity. Such models may help to identify parameter variations which are associated with subtle hormonal variations occurring in women in their 30’s and model simulations may assist in the testing of hormonal therapies.

Differential equations have been used to model different aspects of hormonal control of the menstrual cycle, e.g., see Bogumil et al. (1972a, 1972b), Plouffe and Luxenberg (1992), Selgrade and Schlosser (1999), Schlosser and Selgrade (2000),
InhB between age 35 and 45 (see Welt et al., 1999), and the which initiates these changes is the gradual loss of primordial remain unaffected (Hale et al., 2007). The biological mechanism subsequent rise in follicular phase FSH, while E2 and P4 levels Harris-Clark et al. (2003), Reinecke and Deuflhard (2007), Pasteur antim ¨ullerian hormone (AMH) are produced by the ovaries. produced by the pituitary. Estradiol (E2), progesterone (P4), the inhibins and ovarian axis. Luteinizing hormone (LH) and follicle stimulating hormone (FSH) are Hormonal control of the menstrual cycle via the hypothalamic-pituitary- Fig. 1. We present a system of 16 delay differential equations with 66 parameters which models a woman's reproductive years between age 20 and 51 from the point of view of hormonal control. Our model simulations approximate data in the literature (Welt et al., 1999) for two age groups of women, 20–34 yr old and 35–46 yr old. Our model reflects changes in hormone levels and follicle numbers that occur during that time span, e.g., the continual drop in AMH (see Lee et al., 1996; Hudson et al., 1990), the decrease in InhB between age 35 and 45 (see Welt et al., 1999), and the subsequent rise in follicular phase FSH, while E2 and P4 levels remain unaffected (Hale et al., 2007). The biological mechanism which initiates these changes is the gradual loss of primordial follicles (Skinner, 2005). The "primordial pool" refers to the dormant follicles that a woman is born with and this pool continually decreases over time due to atresia or due to transfer to the active state. White et al. (2012) recently reported the discovery of stem cells in a woman's ovaries which may produce oocytes after birth. However, we model primordial follicles formed only after birth, their transfer to growing follicles and then these follicles as they mature through primary, preantral, antral and dominant status followed by ovulation and luteinization. Our previous models (Selgrade and Schlosser, 1999; Harris-Clark et al., 2003; Margolskeel and Selgrade, 2011) did not include state variables representing primordial, primary, preantral and small antral follicles nor did they include AMH and InhB. The decline of the primordial pool is eventually realized in a decreased number of preantral and small antral follicles, which directly translates to decreased levels of AMH and InhB (which are produced by these follicles), and the decreased InhB causes increased FSH production (since InhB inhibits FSH production). A goal of our modeling endeavor is to investigate possible hormonal treatments which may improve the fertility of women in their 30's and early 40's. To this end, we show that the administration of exogenous AMH mitigates the loss of primordial follicles and, hence, provides more and possibly healthier follicles for development later in life.

Section 2 develops the model under study and describes the model system of 16 differential equations (S1)–(S16). We devise an ad hoc procedure for estimating the 66 model parameters and discuss aspects of this procedure in Section 3 and Appendix A. The resulting parameter sets are included in Appendix B. Results of model simulations are presented in Section 4 with comparisons to data in the biological literature. Statistical comparisons are made between model simulations of hormones and ovarian stages for age 30 versus age 40. Section 5 demonstrates how exogenous AMH inputs, AMH agonists and AMH antagonists affect model behavior. Finally, we summarize and discuss the results.

2. Biological background and model development

The menstrual cycle of a normally cycling adult female ranges from 25 to 35 day in duration (Ojeda, 1992) and consists of the follicular phase, ovulation and then the luteal phase. Pulses of FSH and LH are secreted by the pituitary in response to pulses of gonadotropin-releasing hormone (GnRH) produced by the hypothalamus on a time scale of minutes. Because the ovaries respond to average daily blood levels (Odell, 1979), our model tracks average daily concentrations of FSH and LH, lumping the effects of the hypothalamus and the pituitary together and just considering the synthesis and release of FSH and LH on the time scale of days. Models with this simplification have predicted quite well daily hormone data in the literature, e.g., Harris-Clark et al. (2003), Pasteur (2008) and Margolskee and Selgrade (2011). As part of their normal function, the ovaries produce E2, P4, InhA and InhB which control the pituitary’s synthesis and release of the gonadotropin hormones during the various stages of the cycle (Yen, 1991). The ovaries also produce AMH which affects early follicular development (Skinner, 2005). Here we extend previous models for monthly cycling to the reproductive life span of a woman by beginning at the primordial stage of follicle development and continuing through primary, preantral, and small antral stages (see Fig. 2).

The follicular stages in our model in developmental order are primordial (Primor), primary (Primary), preantral follicles (PreAnF), small antral follicles (SmAnF), recruited follicles (Ref), growing follicles (GrF), the dominant follicle (DomF), ovulatory follicle (OvF), and four luteal stages (Lut1–Lut4). Note that our previous models referred to the dominant follicle as primary, but this use of the term primary was not in agreement with biological references, e.g., Skinner (2005) and Hansen et al. (2008). Fig. 2 depicts the stages of follicular development, the hormones produced by each stage, and which stages are affected by the pituitary hormones LH and FSH.

A primordial follicle consists of an oocyte surrounded by squamous (flat) granulosa cells. If the primordial follicle does not atrophy, it passes to the primary stage where granulosa cells become cuboidal and theca cells are recruited. The primary stage is considered the initial stage of follicular growth (Skinner, 2005; Maciel et al., 2004; Visser et al., 2006), although Hansen et al. (2008) referred to primary follicles as non-growing because their growth is gonadotropin independent. The transition from the primordial to the primary is stimulated and inhibited by a variety of ovarian factors (Skinner, 2005; Reddy et al., 2009). Skinner (2005) discussed granulosa and theca cell products that promote the primordial to the primary transition such as KL, KGF and bFGF growth factors. On the other hand, the hormone AMH produced
Fig. 2. Depicted are the stages of follicular development as modeled by our system of equations. The follicular stages included in our model are primordial follicles, primary follicles through the ovulatory follicle and corpus luteum. Arrows between each stage represent a transition from one follicle type to the next. Arrows pointing away from follicles represent hormones secreted by these follicles. FSH and LH are produced and released by the hypothalamus/pituitary. Arrows pointing from FSH and LH represent the effects of these hormones on follicle growth and transition. The dashed arrow pointing from AMH indicates the inhibitory role that AMH plays on the primordial to primary transition.

by primary, preantral and small antral follicles is known to inhibit the transition from the primordial to the primary pool (Skinner, 2005 or Reddy et al., 2009). Also Reddy et al. (2009) described ovarian genetic factors such as oocyte PTEN and Foxo3a which suppress the activation of the primordial follicle pool and hence the transition to the primary pool. The first ovarian stage in our model, Primor, represents the primordial pool of follicles. The differential equation for this stage is a single term representing the decay rate of the primordial pool and is directly proportional to Primor and inversely proportional to both Primor and AMH (see Eq. (S1)). This term models inhibitory signals between primordial follicles and the inhibitory role of AMH on the primordial to primary transition. The decay term from (S1) appears as a growth term in (S2) for the number of primary follicles, Primar. The factor of r_{surv} represents the fraction of primordial follicles that are not lost to atresia before becoming primary follicles, i.e., r_{surv} is the survival rate. The amount of AMH in (S1)–(S2) is given by (A5) appearing below

$$\frac{d}{dt} \text{Primor} = \frac{r_1 \text{Primor}}{1 + c_{prim} \text{Primor} + c_{AMH} \text{AMH}}$$ \hspace{1cm} (S1)$$

$$\frac{d}{dt} \text{Primar} = r_{surv} \frac{r_1 \text{Primor}}{1 + c_{prim} \text{Primor} + c_{AMH} \text{AMH}} - r_2 \text{Primar}$$ \hspace{1cm} (S2)$$

The Primar stage is followed by PrAnF and SmAnF (Eqs. (S3)–(S4)), which represent preantral and small antral follicles, respectively. These stages and all subsequent follicular stages represent volumes instead of numbers of follicles. Thus, we multiply the transfer term from Primar to PrAnF in (S3) by a parameter for the average volume per preantral follicle (vol_{2}). A follicle which ultimately releases its ovum spends several months (Nussey and Whitehead, 2001) developing from a preantral follicle into an ovulatory follicle, Or in (S8). During that time the maturing follicle acquires FSH receptors and its future growth becomes gonadotropin dependent as indicated by the decay term in (S3), and the growth terms in (S4). These terms have the form of an increasing Hill function of FSH in agreement with Zeleznik (2004) who suggested that FSH levels must rise above a threshold to initiate follicular development. Thus the sustained growth of the small antral stage, SmAnF in (S4), depends on FSH exhausting the growth serum concentration. The exponents α and β are referred to as Hill coefficients and we determine these parameter values through our estimation procedure

$$\frac{d}{dt} \text{PrAnF} = \text{vol}_{2} \cdot r_2 \cdot \text{Primar} - r_3 \frac{\text{FSH}^3}{\text{Km}_{FSH}^3 + \text{FSH}} \text{PrAnF}$$ \hspace{1cm} (S3)$$

$$\frac{d}{dt} \text{SmAnF} = r_3 \frac{\text{FSH}^2}{\text{Km}_{FSH}^2 + \text{FSH}} \text{PrAnF} + \left[r_4 \frac{\text{FSH}^5}{\text{Km}_{FSH}^5 + \text{FSH}^5} - r_5 \right] \text{SmAnF}$$ \hspace{1cm} (S4)$$

At the beginning of a woman’s monthly cycle, 6–12 follicles are recruited from the pool of early antral follicles to grow under the influence of FSH and LH with the opportunity to reach ovulatory size (Fig. 2). The growth of the recruited follicles, ReF in (S5), depends on SmAnF and on FSH reaching an early follicular phase threshold, see (S5). AMH is thought to decrease the FSH-sensitivity of late antral follicles (see (S6)), playing a role in the selection of the dominant follicle (Visser et al., 2006). Typically one follicle is selected to be dominant and then to release its ovum in response to a surge of LH. Ovulation and luteinization transform the dominant follicle into the corpus luteum which produces P4 to prepare the endometrium for pregnancy. If fertilization does not occur, the corpus luteum regresses, menstruation follows and a rise in FSH marks the beginning of the next cycle. The state variables in (S5)–(S12) represent tissue volumes of eight distinct stages of the ovary during the follicular and luteal phases of the cycle (see Harris-Clark et al., 2003). ReF, GrF and DomF denote the recruited follicles, the growing follicles and the preovulatory or dominant follicle, respectively. Or represents a periovulatory stage and Lute, i = 1,...,4, denote four luteal stages. Since clearance from the blood of the ovarian hormones is on a fast time scale, we assume that blood levels of E2, P4, InhA, InhB, and AMH are at quasi-steady state (Keener and Sneyd, 2009) as did Bogumil et al. (1972a). Hence, we take these concentrations to be proportional to the tissue volumes during the appropriate stages of the cycle giving the five auxiliary equations (A1)–(A5)

$$\frac{d}{dt} \text{Ref} = r_5 \text{SmAnF} + \left[c_{1} \frac{\text{FSH}^2}{\text{Km}_{FSH}^2 + \text{FSH}} - c_2 \text{LH}^2 \right] \text{Ref}$$ \hspace{1cm} (S5)$$
In terms of these stages, the ovarian hormones are given by
\[E_2 = e_0 + e_1 GrF + e_2 DomF + e_3 LuT_4 \]
(A1)
\[P_4 = p_0 + p_1 LuT_5 + p_2 LuT_4 \]
(A2)
\[InhA = h_0 + h_1 DomF + h_2 LuT_2 + h_3 LuT_3 \]
(A3)
\[InhB = j_0 + j_1 SmAnF + j_2 Ov \]
(A4)
\[AMH = a_1 Prim + a_2 PrAnF + a_3 SmAnF \]
(A5)

The ovarian hormones regulate the synthesis and release of FSH and LH by the hypothalamus and pituitary as described by four differential equations (S13)–(S16), which are similar to the equations in Harris-Clark et al. (2003). The state variables \(R_{PLH} \) and \(R_{PFSH} \) represent the amounts of these hormones in the pituitary and \(LH \) and \(FSH \) represent the blood concentrations of these hormones. The biological literature (Karsch et al., 1973; Liu and Yen, 1983 or Yen, 1991) indicates that \(LH \) exhibits a biphasic response to \(E_2 \), with low concentrations of \(E_2 \) inhibiting and high levels of \(E_2 \) stimulating LH serum concentrations. To capture this our model assumes that the effect of \(E_2 \) on LH synthesis is different than the effect on LH release (Schlosser and Selgrade, 2000), i.e., \(E_2 \) inhibits release (see the denominator of the second term in (S13)) but at high levels \(E_2 \) promotes synthesis (see the Hill function in the numerator of the first term of (S13)). On the other hand, \(P_4 \) inhibits LH synthesis but promotes release (Schlosser and Selgrade, 2000). The release term appears in (S13) as a decay term and in (S14) as a growth term, where it is divided by blood volume \(v \). Eqs. (S15)–(S16) for FSH are similar except the synthesis term has InhA and InhB inhibition. Because hormone synthesis is biochemically more complicated than release, the time-delay parameters \(d_s, d_o, d_{inhA} \) and \(d_{inhB} \) are assumed only for the synthesis terms and describe the periods between the time when changes in serum levels of \(E_2, P_4 \) and Inh occur and the time when subsequent changes in LH and FSH synthesis rates occur. Based on results of previous work of Harris-Clark et al. (2003), Margolskee and Selgrade (2011) and Schlosser and Selgrade (2000), a Hill coefficient of 8 provides the appropriate steepness for the LH synthesis curve in (S13) so that simulations will closely approximate LH data in the literature (Welt et al., 1999; McLachlan et al., 1990)

\[dR_{PLH} = \frac{V_{PLH} + \frac{v_{PLH}}{K_{PLH} + v(t - d_t)}}{1 + P_4(t - d_t)/K_{PLH}} \times \frac{k_{PLH}(1 + c_{cPLH}P_4)R_{PLH}}{1 + c_{cPLH}E_2} \]
(S13)
\[dLH = \frac{1}{v} \times \frac{k_{LH}P_3R_{PFSH}}{1 + c_{cLH,E_2}} - c_{LH}LH \]
(S14)
\[dR_{PFSH} = \frac{V_{FSH}}{1 + \frac{InhA(t - d_{inhA})}{K_{FSH,inhA}} + \frac{InhB(t - d_{inhB})}{K_{FSH,inhB}}} - \frac{k_{FSH}(1 + c_{cFSH,FSH}P_4)R_{PFSH}}{1 + c_{cFSH,FSH}E_2} \]
(S15)
\[dFSH = \frac{1}{v} \times \frac{k_{FSH}(1 + c_{cFSH,FSH}P_4)R_{PFSH}}{1 + c_{cFSH,FSH}E_2} - c_{FSH}FSH \]
(S16)

3. Methods

3.1. Computational methods

Numerical computations are performed using Matlab version 7.12 on a quad-core PC equipped with a 7th generation Intel chip.

<table>
<thead>
<tr>
<th>Step size (day)</th>
<th>Phase shift (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>0.05</td>
<td>0.2161</td>
</tr>
<tr>
<td>0.025</td>
<td>0.2415</td>
</tr>
<tr>
<td>0.0125</td>
<td>0.2436</td>
</tr>
</tbody>
</table>

Table 1 Summary of grid-refinement study of phase shift in time direction of numerical simulation after integrating from age 20 to 50 using ddeRK4.

Column 1 is the step size used in integration and Column 2 is the difference in day of LH peak (phase shift) at the end of 30 yr when compared to the solution obtained using the step size of 0.1 day. Fitting a simple power function \((a + bx^c)\) to these data gives an intercept of \(a = 0.2438\) day, which implies a phase shift for the simulation with step size 0.1 approaches 0.2438 day with successively smaller step sizes.
and 8.00 GB installed RAM. Delay differential equations are solved using Matlab's built-in delay differential equations solver dde23, which numerically integrates delay differential equations with constant delays. It employs the Runge Kutta (2,3) pair to perform a variable step integration, and uses a Hermite cubic interpolant to determine lagged values from stored history (Shampine and Thompson, 2001). When equations are decoupled, and the result produces a smaller system of equations with no delays, this system is integrated using Matlab's ode23.

Numerical drift can result when the local truncation errors of a numerical approximation are compounded with each iteration, causing the numerical approximation to drift away from the true solution (Ralston and Rabinowitz, 1978). Numerical drift resulting during numerical integration will accumulate over longer periods of integration. The extent of numerical drift is dependent upon the step size used during integration, with smaller step sizes resulting in less numerical drift. Thus, the extent of numerical drift can be analyzed with a grid-refinement study. For periodic solutions of differential equations, numerical drift can present itself as a phase shift in the time direction. Since solutions of our system that are of interest are exponentially attracting, we expect to see numerical drift primarily in the time direction.

To determine the extent of numerical drift of Runge Kutta methods on our model, we performed a grid-refinement study using a fixed step 4th order Runge Kutta method for delay differential equations which we coded and implemented in Matlab. We refer to this integrator as ddeRK4 (Margolskee, 2012). The solutions obtained by using different time steps in the integrator ddeRK4 were compared to determine the extent of numerical drift. We found that a step size of 0.1 day limits the numerical drift in the time direction to less than 0.25 day when the model is integrated over a period of 30 yr, from age 20 to 50 (see Table 1). When the phase shift in the time direction is accounted for, i.e., the solution profiles are centered at the LH peak, then a step size of 0.1 day limits the deviation in the solution profiles to less than 0.5% for integration spans of more than 30 yr. In an analogous grid refinement study, the numerical drift in the non-cycling stages (Primar and Primar) was observed. These stages are affected by numerical drift to a lesser extent than the monthly cyclic stages (Primor and Primar) observed.

The longest time span of integration reported here is from age 20 to 51, but only the non-cycling equations (Primor and Primar, see Eqs. (S1) and (S2)) are integrated for this time span (see Section 3.8). These equations also contain no delay, so they are simulated using Matlab's ode integrator ode23. The numerical drift in the magnitudes of these non-cycling equations can be limited to less than 0.1% when a step size of 80 day is used. So we integrate this small system using ode23 with the option MaxStep set to 80.

The monthly cycling differential equations (Eqs. (S3)–(S16)) are simulated for two-month time spans (see Section 3.8). The numerical drift in the time direction over this short time span is negligible. The numerical drift in the magnitude of the solution profiles can be limited to less than 0.5% by using a time step of 0.1 day. So we integrate these equations using dde23 with the option MaxStep set to 0.1.

3.2. Parameter identification (PID)

Estimating the 66 parameter values in system (S1)–(S16) and auxiliary equations (A1)–(A5) requires multiple data sets and considerations of parameter sensitivity and correlation. Data are available in the biological literature for blood levels of the pituitary and ovarian hormones but not for the state variables of Eqs. (S3)–(S12). However, some information is known about realistic values for volumes of ovarian stages (e.g., Nussey and Whitehead, 2001). Attempting to be faithful to the biology and to use valid numerical techniques leads us to develop an ad hoc, iterative procedure for estimating the parameters. Some details of our process are described in the following sections and in Appendix A and the resulting parameter sets are included in Appendix B.

3.3. Least squares data fitting

In least squares data fitting, the objective function to be optimized has the form (Kelley, 1999)

$$f(\vec{q}) = \sum_{i=1}^{M} (d_i - y(t_i; \vec{q}))^2 = R(\vec{q})^T R(\vec{q})$$

where \vec{q} is the parameter vector, y is a single model output and d is the data sampled at M time points. R is a column vector of length M with components $d - y(t_i; \vec{q})$, and is referred to as the residual between the data and the model output. If the output is a vector of observations \vec{y} of length N with components y, then we have

$$f(\vec{q}) = \sum_{j=1}^{M} (\vec{d} - \vec{y}(t_i; \vec{q}))^2 = R(\vec{q})^T R(\vec{q})$$

where R is of length MN with components $(d_i - y(t_i; \vec{q}))$.

Fitting the model output to data involves finding a \vec{q} that minimizes the function $f(\vec{q})$. There are many optimization algorithms that can be implemented to find a minimum to a least squares objective function. Public domain codes for many of these optimization algorithms can be found online in the Numerical Analysis and Modelling software repository at Zuse Institut Berlin (ZIB) (Zuse Institut Berlin). These codes are based on the algorithms presented in a book by Deuflhard (2004). Of these codes we explored the use of NLSQ_ERR, which is an implementation of unconstrained Gauss–Newton with an error oriented convergence criterion. In order to insure that the parameters of our system are positive, we optimize the natural log of the parameter values and then exponentiate after optimization.

3.4. Data used during PID and model comparison

Data used during parameter identification are for primordial and primary follicle counts, and plasma concentrations of AMH, E2, P4, InhA, InhB, LH, and FSH. All data are obtained from the literature (Hansen et al., 2008; Hagen et al., 2010; Lee et al., 1996; Sowers et al., 2008; Tehranizadeh et al., 2010; van Beek et al., 2007; van Disseldorp et al., 2008; Welt et al., 1999). Data for follicle counts and AMH are for ages 20–51 yr. Data for E2, P4, InhA, InhB, LH, and FSH are for women between age 20 and 34 yr. Additional data for InhB and FSH are for women between age 35 and 46 yr. For more information on the residuals used during parameter identification see Appendix A.

Hansen et al. (2008) reported data for gonadotropin independent follicle counts. We take these data to represent the sum of primordial and primary follicle counts. The data were reported in a table along with the age of the subjects. The number of subjects between age 20 and 51 yr totaled 103. We refer to this data as $Hansen_{data}$ (see Fig. 3).
Plasma concentration data for AMH from women of age 20–51 yr are taken from several sources (Hagen et al., 2010; Lee et al., 1996; Sowers et al., 2008; Tehrani et al., 2010; van Beek et al., 2007; van Disseldorp et al., 2008). No single clinical data set provided ample samples for all ages. Some of the data sets spanned only a portion of the ages of interest, and all but one of the data sets had sparse sample sizes for most of the ages. van Beek et al. (2007) had data spanning ages 20–38 yr, each age having a sample size of less than 10. Data from van Disseldorp et al. (2008) covered ages 26–47, and only six of the 22 ages had sample sizes of at least 10. Hagen et al. (2010) had data spanning the entire range of interest, however, all but one age had sample sizes of 6 or less. Data from Tehrani et al. (2010) spanned ages 20–50, but only six of these ages had sample sizes of at least 10. Data from Sowers et al. (2008) were an exception, having a sample size of 50 people for each of the ages reported, however, the data set only covered ages 42–47. Combining the data from these six sources results in a data set covering ages 20–51, where all but four of the ages have sample sizes of at least 10 and most ages have sample sizes greater than 20. AMH data sets were in ng/mL except for Hagen which was converted from pmol/L to ng/mL using the conversion 1 pmol/L = 7.14 ng/mL. (Hampl et al., 2011).

The resulting data set is a set of average AMH concentrations by ages 20–51, obtained from a compiled sample of 849 women of 22–34 yr and those of 41–46 yr old (Welt et al., 1999), but we did not consider this to be an important characteristic to capture with our model, thus InhB data for the older women is not included in our comparison. Welt et al. (1999) noted a significant increase in follicular phase E2 in the older group as compared with the younger group (p-value < 0.02), however, other sources have cited decreased E2 concentrations in the menopausal transition (Broekmans et al., 2009; Burger et al., 2007), or no significant difference between women of 22–34 yr and those of 41–46 yr old (p-value > 0.05, not significant) (van Zonneveld et al., 2003). Thus we do not include E2 concentrations from the Welt data for the older women in our analysis.

3.5. Sensitivity, correlation, and uncertainty quantification

The model presented here has a large number of parameters, and a number of state variables for which there are no direct experimental data. Attempting to identify all of the parameters at once leads to poor convergence of the numerical optimization schemes, and limited parameter identifiability. In the presence of poor convergence, it may be helpful to examine the sensitivity of the model to the parameters and correlations among the parameters. Insensitivity of a model to a parameter means that large changes in the parameter have little effect on the model output. This leads to greater uncertainty of the optimal parameter value and can prevent an optimization algorithm from converging. If a pair of parameters is correlated then changing one parameter is related to changing the other parameter, which may limit parameter identifiability.

The sensitivity of a model output y with respect to a parameter set q is the matrix $\frac{\partial y}{\partial q}$ (also called the Jacobian of y) evaluated at the time points t_1, t_2, \ldots, t_M associated with the data (Banks et al., 2007)

$$S(q) = \frac{\partial y}{\partial q} = \begin{bmatrix} \frac{\partial y_1}{\partial q_1} & \frac{\partial y_1}{\partial q_2} & \cdots & \frac{\partial y_1}{\partial q_p} \\ \frac{\partial y_2}{\partial q_1} & \frac{\partial y_2}{\partial q_2} & \cdots & \frac{\partial y_2}{\partial q_p} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_M}{\partial q_1} & \frac{\partial y_M}{\partial q_2} & \cdots & \frac{\partial y_M}{\partial q_p} \end{bmatrix}$$

It describes the sensitivity of the model to the parameters at the chosen time points. Here p is the number of parameters in q and M is the number of data points, which makes S a matrix of size $M \times p$. If the model output is a vector \tilde{y} of length N then the sensitivity matrix will be a matrix of size $MN \times p$. Note that sensitivities will vary depending on the parameter values, q.

Fig. 3. Eqs. (S1)–(S2) and (A5) are solved using the optimized parameters (Table B1, Appendix B), starting at age 20 and using the initial conditions $\text{Primor}_0 = 265,000$, and $\text{Primar}_0 = 100$. The sum of the model solutions Primor and Primar is log transformed and plotted against log(Hansen_end) (Hansen et al., 2008). The model for AMH is plotted against composite AMHdata (Hagen et al., 2010; Lee et al., 1996; Sowers et al., 2008; Tehrani et al., 2010; van Beek et al., 2007; van Disseldorp et al., 2008).
and the times, \(t_1, \ldots, t_M \), at which they are evaluated. For comparison across parameters and outputs of differing magnitudes, it is often helpful to consider the relative sensitivities which are obtained by multiplying each element \(\delta y(t; q_1, q_2) / \delta q \) by \(q_1 / \delta q_1 \) (Olufsen and Ottesen, 2012). The five most sensitive parameters in our model according to the regular sensitivities are \(c_{s_{\text{AMH}}}, c_{s_{\text{AME}},} c_2, c_{s_{\text{SLM}},} \) and \(c_3 \). In contrast, the most sensitive parameters according to the relative sensitivities are \(\delta, \delta_{\text{cLH}}, \delta_1, \delta_2, \) and \(\delta_{\text{AMH}} \). This difference in the sensitivity rankings is due to the magnitudes of the parameters. The parameters \(c_{s_{\text{SLM}}}, c_2, c_3 \), and \(c_4 \) are smaller in magnitude than many of the other parameters (see Tables B2 and B3 in Appendix B), so it is reasonable that a small absolute change in these parameters could result in a larger change in the model output. The relative sensitivities effectively look at how the percent change in the parameters affects the model output.

The covariance of parameters can be used to determine correlations among parameters and to quantify the uncertainty in a parameter set. Normally covariance of a set of random variables would be estimated from a sample distribution of the parameters. The covariance matrix \(\text{cov} \) is symmetric with 1’s on the diagonal, \(C_{ij} = \text{cov}_i j \). Here the covariance, \(\sigma^2 \), is assumed constant and can be estimated as \(\sigma^2 = R^2 (\bar{q}) \text{var} (\bar{q}) / (n-p) \) where \(R \) is the residual between the model and data, \(n \) is the number of data points (length of \(R \)), and \(p \) is the number of parameters (length of \(\bar{q} \)). The square roots of the diagonal entries of the covariance matrix are the standard errors associated with the parameters, thus the covariance matrix can be used to estimate the uncertainty in the choice of parameters. The covariance matrix can also be used to determine correlations among the parameters. Correlation of parameters can be given by

\[
C_{ij} = \frac{\text{cov}_{ij}}{\sqrt{\text{cov}_{ii} \text{cov}_{jj}}}
\]

where \(\text{cov} \) is the covariance matrix, and can be estimated using \(\text{cov} \) in place of cov.

The correlation matrix \(C \) is symmetric with 1’s on the diagonal, and values between -1 and 1 elsewhere. The closer the \(C_{ij} \) entry is to \(\pm 1 \), the more correlated are the parameters \(q_i \) and \(q_j \). A reasonable rule proposed in Olufsen and Ottesen (2012) is to consider all entries greater than 0.9 in magnitude to imply correlation. Note that \(S^S \) must have full rank in order to be inverted, and since \(\text{rank}(S) = \text{rank}(S) = \text{rank}(S) \leq \min(n,p) \), it is necessary that \(p \) be less than \(n \). There need to be at least as many data points as there are parameters. If there are too many parameters compared to data, then there will necessarily be correlations among the parameters. If a pair of parameters is determined to be correlated, it may be possible to decouple the parameters or reduce the parameter set through nondimensionalization (Sonin, 2001).

3.6. Model-specific correlations

The parameter \(r_{\text{surv}} \) shows correlations with \(a_1 \) and \(r_2 \) (see Eqs. (S1)–(S2) and (A5)), with correlation coefficients of 0.938 and 0.997, respectively. Thus we estimate \(r_{\text{surv}} \) and fix it during optimization. The parameter \(r_{\text{surv}} \) is estimated from the decline of \(\text{Hansent}_{\text{usa}} \) and the estimated monthly pool of primary follicles. The approximate decline of the primordial pool from at age 20 is 22,000 per year (taken as the slope of the power fit to data in Hansen et al., 2008), or approximately 1833 per month. According to Nussey and Whitehead (2001), it takes about 120 day (4 month) for a new primary follicle to reach the preantral stage (0.2 mm in diameter). If we assume there are 100 primary follicles at any time in a woman of age 20, developing over a course of four months, then there is an average of 25 follicles per month leaving the primary pool. The difference between the average decrease in the primordial stage and the average decrease in the primary stage is modeled as atresia in the primordial to primary transition. The difference of 1833 primordial follicles leaving the primordial pool per month, and 25 follicles per month maturing in the primary stage, means approximately 1.4% of the primordial follicles leaving the primordial pool survive through the primary stage and 98.6% are lost to atresia. We model this loss as a survival factor in the primordial to primary transition. From this, we have \(r_{\text{surv}} = 0.014 \).

The parameters \(r_2 \) and \(a_1 \) (Eqs. (S2) and (A5)) are correlated with a correlation coefficient of 0.937. The correlation between \(r_2 \) and \(a_1 \) comes from the fact that \(a_1 \) determines the magnitude of \(\text{AMH} \) in terms of the magnitude of \(\text{Primar} \), which is governed by \(r_2 \). Fixing \(r_2 \) during optimization results in unwanted transient behavior in the solution profile for \(\text{Primar} \) when any of the parameters in the growth term for \(\text{Primar} \) are changed. For example, decreasing \(r_1 \) without changing \(\text{f} \) creates a steep initial drop in the profile for \(\text{Primar} \), while increasing \(r_1 \) without changing \(\text{f} \) creates a steep initial climb. In order to avoid this transient behavior, we replace \(r_2 \) in the equation for \(\text{Primar} \) with

\[
r_2 = \frac{r_2 - 265,000}{1 + c_{\text{Primar}}^{-1} - 265,000 + c_{\text{AMH}}^{-1} \cdot q_1 - 100}
\]

and fix \(r_2 \) during optimization. The value of 0.01 for \(r_2 \) eliminates the unwanted transient behavior (at this value the right hand side of Eq. (S2) is zero at age 20).

Correlation of parameters in the remaining ovarian system equations (Eqs. (S3)–(S12)) is due in part to the fact that we do not have data for the ovarian stages themselves, but only for the ovarian hormones modeled by the auxiliary equations (A1)–(A4). Theoretically, the follicular stages could grow to any magnitude during optimization, since the auxiliary coefficients ultimately scale them to fit the data. To avoid this, we determine approximate values for the auxiliary coefficients and fix them during optimization. The auxiliary coefficients represent hormone production per ovarian stage volume, and thus can be approximated with knowledge of the hormone levels during the different stages and approximate volumes of each follicular stage. The volume of the dominant follicle at ovulation, \(Ov \), is taken to be 4000 mm\(^3\). Assuming that it is approximately a sphere of diameter 20 mm (Nussey and Whitehead, 2001). Assuming that the ovary is largest around the time of ovulation, we also take \(LUT \) to be 4000 mm\(^3\). Then we take the maximum values for the other six follicular stages to differ by increments of 1000 mm\(^3\) as follows:

\[
\text{Ref} = \text{Lut}=1000, \text{ GrF} = \text{Lut}=2000, \text{ and DomF} = \text{Lut}=3000.
\]

Finally, we take the maximum for \(\text{SmAmF} \) to be 10 mm\(^3\). Assuming these maximum values for the follicular stages, and noting the hormone levels of the data from Welt et al. (1999) during these different phases of the cycle, we are able to determine approximate values for the auxiliary coefficients that will result in the necessary hormone levels. The auxiliary coefficients (see Table B4, Appendix B) are fixed during optimization so that the follicular stages remain at realistic sizes.
Additional correlations exist among parameters for which we have no empirical data. For these correlations, we fix the least sensitive parameters. The parameters $V_{1, LH}$ and Km_{LH} (see Eq. (S13)) are correlated with correlation coefficient 0.946. $V_{1, LH}$ is the less sensitive parameter, thus we fix it during optimization. The parameter V_{FSH} is correlated with $Ki_{FSH, A}$ and $Ki_{FSH, B}$ (see Eq. (S15)) with correlation coefficients 0.974 and 0.967. $Ki_{FSH, A}$ and $Ki_{FSH, B}$ are correlated with correlation coefficient 0.916. Of these parameters, V_{FSH} is the most sensitive (according to relative sensitivities), thus $Ki_{FSH, A}$ and $Ki_{FSH, B}$ are fixed during optimization. The parameters Km_{E2} and r_3 are correlated with correlation coefficient 0.988, and r_5 is more sensitive. The parameters o and c_5 are correlated with correlation coefficient 0.956, and o is more sensitive.

3.7. Tests for significance

Tests for significant difference between the model simulations at age 30 versus age 40 (see Section 4.2) are performed by using two-tailed two sample t-tests on the means from independent samples of 500 Monte Carlo simulations for each of the two ages. The Monte Carlo simulations are performed by sampling parameters from log-normal distributions with means and standard deviations corresponding to the obtained parameter values and standard errors, respectively (see Appendix B). Only the subset of parameters that are varied during optimization are sampled during Monte Carlo simulation. The means and standard deviations of the simulations are computed separately for each model output (i.e., each hormone or follicular stage), and for each day of the cycle. For each model output there is a family of 28 hypotheses, each corresponding to a day of the monthly cycle. Thus we use the Bonferroni correction (Ott and Longnecker, 2010) to control the overall error rate, i.e., for an overall significance level of α, or an overall confidence of $100 \cdot (1-\alpha)/\%$, we reject the individual null hypotheses with significance level $\alpha/28$. We use the significance levels of $\alpha = 0.05$ and 0.01 to be significant and very significant, respectively. Hence, in order to achieve overall confidence of 95% and 99%, we restrict the individual p-values to be less than $0.05/28 \approx 0.00179$ and less than $0.01/28 \approx 0.000357$, respectively.

3.8. Model-specific treatment of multiple time scales

The primordial pool of follicles declines over the lifetime, a timespan of decades. The decline of AMH from mid-reproductive age to menopause follows a similar trend. Data for the primordial pool and AMH are thus on the order of years. The remaining hormones in our model, E2, P4, InhA, and InhB produced in the ovaries and LH and FSH produced in the pituitary, display daily variations and cycle monthly. The follicular stages that respond to the pituitary hormones (PrAnF and subsequent stages, see Eqs. (S3)–(S12)) will also exhibit monthly cycling behavior. Therefore, our model exhibits the time scales of days and of years.

The multiple time scales in this model have the potential of creating numerical and computational difficulties. In order to approximate the daily data of the monthly cycling hormones (E2,
P4, InhA, InhB, LH and FSH), the model equations (S1)–(S16) must be solved with a time step less than 1 day. However, to capture the declining trend of the primordial pool and AMH throughout a woman’s lifetime, the model equations must be solved over a time span of several decades. Integrating the system from age 20 to 50 using Matlab’s dde23 takes over 8 min on a quad-core PC equipped with a generation 7 Intel chip and 8.00 GB RAM. The system of differential equations has 66 parameters, an optimization scheme that integrates the entire system over this time period would take over 8 h just to change each parameter once, let alone converge to an optimal parameter set. This presents a problem for parameter identification.

In order to use data of the two different time scales in parameter identification for our system, the parameters a_2 and a_3 in Eq. (A5) are set to zero, allowing for the decoupling of Eqs. (S1), (S2), and (A5) from the rest of the system. This system of two ordinary differential equations is solved from age 20 to 51 using ode23 and optimized against Hansen_data and AMH_data (see Appendix A for residual used during PID).

Once a parameter set is obtained for this small system (see Appendix B for parameter values), the remaining equations (S3)–(S16) and (A1)–(A4) can be solved at any age by using initial conditions for Primord and Primar obtained from the simulation to Eqs. (S1)–(S2) integrated up to the required age. The initial conditions for the remaining state variables (see Eqs. (S3)–(S16)) can be obtained at a specific age by fixing Primor and Primar and integrating the remaining equations for two-month time spans until the stable attractor has been reached. Centering the LH peak at day 14, the value of a stage at day 1 is taken to be the initial condition for that stage. When the change in initial condition from one cycle to the next is less than 1%, we assume we have found the stable attractor. The initial conditions for age 20, 30 and 40 are included in Table B5.

Obtaining parameter values for the remaining parameters involves solving the delay differential equations (S3)–(S16) using dde23 and auxiliary equations (A1)–(A4), for two-month time spans starting at age 30, i.e., time $t_{30} = 30 \times 365$ day and at age 40, i.e., time $t_{40} = 40 \times 365$ day. These solutions are then fit to data for women of ages 20–34 and 35–46, respectively, from Welt et al. (1999). For more information on the residuals used during optimization see Appendix A.

In situations where there are multiple stable attractors for the same parameter set, there is a real possibility that simulations starting at age 40 might settle on a different stable attractor than simulations starting at age 30. For any parameter set tested for this model, numerical experiments indicate that there appears to be just one stable attractor for the total time span. Updating the initial conditions at each step during optimization insures that the solution profile is close to this stable attractor. The initial conditions for the primordial pool is taken from Hansen (2006), the initial condition for that stage. When the change in initial condition from one cycle to the next is less than 1%, we assume we have found the stable attractor. The initial conditions for age 20, 30 and 40 are included in Table B5.

4. Simulations and results

4.1. PID of the primordial to primary transition and AMH

Setting a_2 and a_3 equal to zero in Eq. (A5) allows for Eqs. (S1)–(S2) and auxiliary equation (A5) to be decoupled from the larger system, as they no longer depend on the remaining equations. This smaller system is solved from age 20 to 51 and optimized against the follicle data, Hansen_data, and AMH data, AMH_data.

The initial condition for the primordial pool is taken from Hansen et al. (2008) (see the equation on p. 703) as the power fit to data evaluated at age 20 giving 265,000 follicles. The initial condition for the number of primary follicles at age 20 is taken to be 100. This value is derived from Broekmans et al. (2009) which asserted that there are between 20 and 150 early growing follicles (sized 0.05 mm–2 mm in diameter) at any time in a woman of age 25–40. According to Nussey and Whitehead (2001), preantral and small antral follicles are between 0.2 mm and 2 mm in diameter, and

Fig. 5. Hormone profiles from the model solved at ages 30 (red solid curves) and 40 (black dashed curves) are plotted against data (red dots) for younger women (ages 20–34) and data (black squares) for older women (ages 35–46) from Welt et al. (1999). In the older women, early to mid follicular phase (days 1–9) InhB is lower and early to mid follicular phase FSH is higher. InhB is produced by early growing follicles which have declined in number between age 30 and 40. The rise in follicular phase FSH is in response to the decreased InhB. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
according to Maciel et al. (2004) there are between two and three times as many primary follicles as there are preantral and small antral combined. Thus, using the maximum estimate in Broekmans for age 20, we assume that there are approximately 100 primary follicles and 50 preantral and small antral follicles at age 20.

Correlation of parameters was handled as described in Section 3.6. The remaining parameters represent an uncorrelated set, and the numerical optimization algorithm NLSQ_ERR applied to this smaller system converges. The optimized parameters for this smaller system are included in Table B1 of Appendix B. Model output for Eqs. (S1)–(S2) and (A5) are plotted against data in Fig. 3.

4.2. PID of monthly cycling follicular stages and hormones, and key changes with age

Eqs. (S3)–(S16) can be solved at any age by using initial conditions for Primor and Primar obtained from the solution to Eqs. (S1)–(S2) evaluated at the required age. The simulations for Eqs. (S1)–(S2) evaluated at age 30 (t_{30}) and 40 (t_{40}) give the approximate primordial and primary follicle counts as Primor(t_{30}) = 108,000 and Primar(t_{30}) = 72.5 for age 30, and Primor(t_{40}) = 19,000 and Primar(t_{40}) = 27.6 for age 40. The initial conditions for the remaining stages for a certain age can be obtained by fixing Primor and Primar, which vary little on the time scale of months, and integrating the remaining equations until they have approached the stable attractor. The model simulations are centered with the LH peak at day 14 of the cycle, and day 1 is taken to be the initial condition. This procedure for determining the initial conditions is done whenever the parameter set is varied, and thus must be done at each step in an optimization scheme.

Using the numerical optimization algorithm NLSQ_ERR, we observed that the changes in the logs of the parameters with each iteration converged to less than 10^{-3}. Since the logs of the parameters were optimized (see Section 3.3), this signifies that...
the parameters have converged to within 0.1%, and so can be reported to within three significant digits. The parameters are reported in Tables B2–B4. The standard errors (see Section 3.5) associated with this parameter set are also included in Appendix B, and provide an indication of the uncertainty in the presented parameter values. The parameter set reported here provides the smallest observed residual. Running 5000 Monte Carlo simulations, sampling parameters from log-normal distributions with means and standard errors as in Appendix B, revealed no parameter set with smaller residual. The simulations obtained from this parameter set are included in Figs. 4–6.

The simulated hormone profiles for LH, E₂, P₄ and InhA are plotted in Fig. 4 against data for younger women, and the hormone profiles for FSH and InhB are plotted in Fig. 5 against data from Welt et al. (1999) for both younger and older women. Fig. 6 contains the solution profiles for the follicular stages PrAnF–Lut₄ (the states associated with Eqs. (S3)–(S12)).

The hormone profiles for LH, E₂, P₄ and InhA (Fig. 4) are not significantly different for the two age groups, but InhB and FSH (Fig. 5) are very significantly different (overall confidence 99%). The simulations exhibit lower InhB and higher FSH during the follicular phase for age 40 as compared to age 30, and these differences are similar to those observed in the Welt et al. (1999) data. The Welt data also exhibit differences in luteal InhB. We may be able to model this difference by including additional stages in the definition of InhB. However, since observations reported by others (e.g., van Zonneveld et al., 2003) indicate that luteal InhB is not significantly different between the two age groups, we decided not to complicate the model with features that do not necessarily reflect the physiology.

InhB is produced by early growing follicles, which have declined in number between ages 30 and 40 (Fig. 6), thus the solution profile for InhB is lower at age 40 than it is at age 30 (Fig. 5). Hence the following simulated treatments use an optimal fit to the data (Fig. 5). LH, E₂, P₄ and InhA are indicative of the ovulatory follicle and corpus luteum which are similar in ovulatory women of these two age groups (van Zonneveld et al., 2003). Increased sensitivity to FSH of growing follicles caused by decreased AMH (see Eq. (S6)) allows for full development of the growing follicles, and thus the dominant follicle, ovulatory follicle and corpus luteum in older women. The volumes of stages GrF, DomF–Lut₄ are not significantly different between age 30 and 40 (overall confidence 95%), and this similarity may be observed in Fig. 6. Since these stages contribute to the hormones E₂, P₄ and InhA (see Eqs. (A1)–(A3)), these hormones are similar between the two age groups and this similarity extends to the LH profiles because LH depends only on E₂ and P₄.

5. Exogenous AMH, AMH agonists and AMH antagonists

The role that AMH plays in the primordial to primary transition suggests several uses of AMH for fertility treatment, for delaying menopause and for contraception. Since AMH inhibits the transition of follicles from the primordial to the primary stages, AMH or an AMH agonist could be given to premenopausal women to slow this transition and hence may delay the loss of fertility due to low antral follicle count (Broekmans et al., 2009). This treatment would be for women who are waiting to get pregnant until they are older and are worried about the decline of fertility with age due to declining follicle reserve. In the extreme case, if the transition is slowed enough then the number of growing follicles may be decreased enough to prevent ovulation during treatment. Thus AMH or an AMH agonist could be used as a contraceptive. Alternatively, an AMH antagonist could be given to women who are trying to become pregnant but face difficulty due to low antral follicle count. This would be a short term fertility treatment and could possibly be combined with existing fertility treatments such as FSH administration. Our model can be used to simulate outcomes of these treatments. Recall that the numerical optimization algorithms converged to an optimal parameter set for the small system (Eqs. (S1), (S2), and (A5)). Hence the following simulated treatments use an optimal fit to Hansen_data and AMH_data as the control.

5.1. Exogenous AMH treatment to delay menopause

Predictions for treatment with exogenous AMH from age 25 to 35 with doses that would achieve 5 ng/mL and 20 ng/mL increases in serum AMH are included in Fig. 7. The treatment is modeled as a constant (5 ng/mL or 20 ng/mL) added to Eq. (A5) between the ages 25 and 35. The rate of decline of the primordial pool is decreased during the treatment period, and resumes a normal course after the treatment is ended. The number of primary follicles that are developing during the treatment period is decreased, and this decline is dose-dependent. The 5 ng/mL treatment delays infertility due to low follicle count by 2 yr. While the 20 ng/mL treatment delays this by 5 yr. After the treatment is

Fig. 7. Predicted follicle numbers for individuals given exogenous AMH from age 25 to 35. Predictions plotted are for treatments that would achieve 5 ng/mL (red dashed curves) or 20 ng/mL (yellow dot-dashed curves) increase in serum AMH. The 5 ng/mL treatment delays infertility due to low follicle count by 2 yr, and the 20 ng/mL treatment delays this by 5 yr. The number of primary follicles that are developing during the treatment period is decreased, and this decline is dose-dependent. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
ended, normal monthly cycling resumes and behaves as it would for a woman 2 or 5 years younger, respectively. If the woman would have stopped ovulating around age 48 without treatment, she would now stop ovulating around age 50, or age 53, respectively. Note that these treatments are not expected to prevent infertility due to factors other than low follicle count.

5.2. Exogenous AMH treatment as a contraceptive

In theory, if enough AMH is given during treatment, the number of developing primary follicles would decrease to zero. In order to use AMH as a contraceptive method, the dosage should be large enough to decrease the primary follicle number to a level below what is necessary for ovulation. According to Broekmans et al. (2004), the average age at last child birth (in a population not applying contraceptive measures) is around 41 yr. This can be used as a proxy for the age at natural loss of fertility. Broekmans et al. (2009) cites that the average age at the onset of cycle

irregularity is about 46 yr, and the average age at menopause (age at final menstrual period) is 51 yr. Our simulations at these ages correspond to primary follicle counts of 23, 7, and 1. An AMH treatment that decreases the simulated primary follicle count to below 23 may be sufficient, but a more conservative treatment that decreases it to below 7 or 1 is more likely to prevent ovulation.

Our simulation predicts that a dose of 55 ng/mL AMH is required to push the primary follicle count of the average 25 yr old woman down to that of a woman of age 41. To decrease the primary follicle count to that of a woman of age 46 and 51, doses of 220 ng/mL and 1300 ng/mL AMH, respectively, are required. Fig. 8 plots these treatments given from age 25 to 35. This is a wide range of possible doses required to prevent ovulation. This range could be used as a starting point for determining the therapeutic threshold.

The doses of AMH for possible contraceptive use mentioned here are much higher than levels found naturally circulating in women; the first being about 10 times, the second about 50 times, and the third about 300 times the natural level of AMH in normal mid-reproductive age women. Thus exogenous AMH for the purpose of contraceptive use may be unrealistic. Studies would need to be performed on the effects of AMH on other systems in the body to determine plausibility of exogenous AMH treatments of this magnitude.

5.3. An AMH antagonist fertility treatment

Fig. 9 includes predictions for treatments with AMH antagonists for one year starting at age 35 or at age 40 where the antagonists block 75% or 95% of AMH action on the primordial to primary transition. The antagonist action is modeled as a factor of 0.25 or 0.05 multiplying the AMH term in the denominator of Eqs. (S1) and (S2). The factor represents the percentage of AMH action not blocked by the antagonist. For the duration of the treatment, the weaker antagonist increases primary follicle numbers by 8 for age 35 (a 16% increase) and by 3 for age 40 (a 12% increase). The stronger antagonist increases primary follicle numbers by 10 for age 35 (a 20% increase) and by 4 for age 40 (a 15% increase). An AMH antagonist could be used to increase small growing follicle numbers. This could be useful by itself, or as part of other fertility treatments such as exogenous FSH. The AMH antagonist would increase the number of small growing follicles available to respond to FSH. Note that these treatments are not expected to
improve fertility in women who experience infertility due to factors other than low follicle count.

6. Summary and conclusion

This study presents a model for hormonal regulation of the menstrual cycle of an adult woman. Our system of 16 non-linear, delay differential equations with 66 parameters tracks normal cycling from a woman's peak reproductive years to menopause. In order to model age-related changes in hormone levels and in cycle behavior, we model the gradual loss of active primordial follicles throughout a woman’s life (Fig. 3) due to atresia or conversion to the active primary state. The decline in the number of follicles with age results in a noticeable decrease in AMH that begins in a woman's 20's (Fig. 3) and a decrease in InhB between age 30 and 40 (Fig. 5). These hormones are produced by preantral and early antral follicles (Fig. 6). The drop in InhB causes a rise in follicular phase FSH (Fig. 5). Levels of E2, P4, InhA and LH (Fig. 4) do not exhibit significant variations between age 30 and 40 primarily because they depend on dominant follicle and corpus luteum development (Fig. 6).

In order to obtain the 66 model parameters we develop an ad hoc procedure which results in a model predicting hormonal levels over multiple time scales. This is accomplished by optimizing the parameters of the system (S1) and (S2) for the primordial and primary follicles. Then the output of the optimized model (S1) and (S2) at any age is used to initiate simulations of the full system (S1)–(S16) at that age (see Section 4). The fact that AMH inhibits the transition of follicles from the primordial stage to primary stage suggests using model simulations with exogenous AMH for this purpose. Fig. 7 shows that treatments with various doses of AMH may reduce the number of follicles entering the active pool and, hence, delay menopause as measured by the number of primordial follicles remaining in the ovaries. It is not clear that if this hypothesis may be investigated clinically. Model simulations show that high amounts of AMH are needed to reduce active follicle numbers to contraceptive levels (see Fig. 8). Finally, Fig. 9 shows how an AMH antagonist may temporarily increase the number of small growing follicles which may improve fertility in a woman who is experiencing infertility due to low follicle count.

The age at which simulated cycling in hormone levels ceases seems to be sensitive to parameters and may not represent the actual mechanism of loss of fertility with age. Changes to the model that may account for anovulation and the cessation of cycling would be incorporating thresholds for ovulation and atresia of the dominant follicle if it fails to ovulate. This could be accomplished with a threshold function for LH necessary for ovulation or a threshold for the number of follicles required for dominant follicle selection and ovulation. The latter option would require tracking the numbers of follicles that are developing during the preantral through growing follicle stages. At this point, the model only tracks the numbers of primordial and primary follicles with the remaining follicle stages represented as volumes. Such considerations will be topics of future work.

Acknowledgment

The authors would like to thank Charles E. Smith for assistance regarding several statistical issues and two anonymous reviewers whose suggestions improved the paper.

Appendix A. Residuals used during optimization

The residual vector used in optimization of Eqs. (S1)–(S2) and (A5) is

$$R = \left[\frac{R_{FSH}}{\sum_{n} \log(n \cdot \text{HansenFsh})} \right]$$

where

$$R_{FSH} = [\log(\text{Primor} + \text{Primar}) - \log(\text{HansenFsh})]$$

and $$n_1, n_2$$ are the sample sizes of HansenFsh and AMHdata, respectively. The error for Primor + Primar is computed using log transformed data because the error in the data is consistent with a log-normal distribution. The two residuals $$R_{FSH}$$ and $$R_{AMH}$$ are divided by the maximum value of the respective data so that these terms are on the same scale. The errors are also each divided by the square root of the number of data points so that the sum of squared residuals of a large and a small data set are weighted equally during optimization.

The residual vector used in optimization of Eqs. (S3)–(S12) and (A1)–(A4) is

$$R = \left[\frac{R_{InhA}}{\sum_{n} \log(n \cdot \text{HansenInh})} \right]$$

where

$$R_{InhA} = [\log(\text{InhA} - \text{InhB})]$$

and

$$R_{InhB} = [\log(\text{InhB} - \text{Fsh})]$$

Here Lhdata,Fshdata, etc., are the data for younger women, and Fshdata,Inhdata,older and Inhdata,older are the data for older women from Welt et al. (1999). The residuals include model output of all six hormones at age 30 (Lh(30),Fsh(30), etc.) compared to data for younger women, and model output for FSH and InhB at age 40 (Fsh(40) and InhB(40)) compared to data for older women. FSH and InhB for older women are included because of the decline of follicular phase InhB and subsequent rise in FSH that is seen between age 30 and 40 (Welt et al., 1999).

Appendix B. Parameters and initial conditions

See Tables B1–B5.

Table B1

Optimized parameters for Eq. (S1)–(S2) and (A5). This parameter set was obtained by minimizing the sum of square residuals of log(Primor + Primar) against log(HansenFsh) (Hansen et al., 2008), and AMH-$$n_1$$ Primar against AMHdata, (Hagen et al., 2010; Hudson et al., 1990; Lee et al., 1996; Sowers et al., 2008; Tehrani et al., 2010; van Beek et al., 2007; van Dissel et al., 2008) (see Appendix A).

<table>
<thead>
<tr>
<th>Eqs. (S1)–(S2)</th>
<th>Eq. (A5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cAMH = 0.226 ± 0.187 mL/ng</td>
<td>a0 = 0.0437 ± 0.00463 mg/ (mL follicle)</td>
</tr>
<tr>
<td>cprim = 1.31E−05 ± 2.49E−06 follicle−1</td>
<td>a1 = 0*</td>
</tr>
<tr>
<td>t sacr = 0.0014</td>
<td></td>
</tr>
<tr>
<td>t1 = 0.00102 ± 0.000178 day−1</td>
<td>a2 = 0</td>
</tr>
<tr>
<td>t2 = 0.00694 day−1</td>
<td></td>
</tr>
</tbody>
</table>

The a's indicate parameter values that were fixed to avoid correlations among parameters during optimization. For t1, a scaled version and t2, was fixed (see Section 4.1). See Fig. 3 for the simulation profiles plotted against data.
Table B2
Optimized parameters for Eqs. (S3)–(S12). This list along with the parameters in Tables B3 and B4 were obtained by minimizing the sum of square residuals of LH, FSH, E2, P4, InhA, and InhbH against data from Welt et al. (1999) (see Appendix A).

<table>
<thead>
<tr>
<th>Eqs. (S3)–(S12)</th>
<th>(v_{O2} = 0.500^* \text{mm}^3)</th>
<th>(K_{m1} = 9.82 \pm 0.306 \text{IU/L})</th>
<th>(K_{m2} = 10.4^* \text{IU/L})</th>
<th>(K_{m3} = 5.08 \pm 0.355 \text{IU/L})</th>
<th>(K_{mAMH} = 20.7 \pm 1.37 \text{ng/mL})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\alpha = 29.1 \pm 2)</td>
<td>(\beta = 2.06 \pm 0.125)</td>
<td>(\gamma = 2.95 \pm 0.137)</td>
<td>(\delta = 0.999 \pm 0.0245)</td>
<td>(\omega = 0.363 \pm 0.0142)</td>
</tr>
<tr>
<td></td>
<td>(\tau_1 = 0.759 \pm 0.0057 \text{day}^{-1})</td>
<td>(\tau_4 = 2.23 \pm 0.0097 \text{L/(day IU)})</td>
<td>(\tau_6 = 1.21 \pm 0.0487 \text{day}^{-1})</td>
<td>(\tau_8 = 0.918 \pm 0.0188 \text{day}^{-1})</td>
<td>(\tau_2 = 0.0575 \pm 0.000499 \text{L/(IU/day)})</td>
</tr>
<tr>
<td></td>
<td>(k_1 = 0.0416 \pm 0.0058 \text{day}^{-1})</td>
<td>(k_3 = 0.405 \pm 0.0181 \text{day}^{-1})</td>
<td>(k_5 = 0.551 \pm 0.0018 \text{day}^{-1})</td>
<td>(k_7 = 0.903 \pm 0.0351 \text{day}^{-1})</td>
<td>(c_1LH = 0.00519 \pm 5.28E \text{–} 0.05 L/(day IU))</td>
</tr>
</tbody>
</table>

The \(\beta \)’s indicate parameter values that were fixed to avoid correlations among parameters during optimization.

Table B3
Parameters for Eqs. (S13)–(S16).

<table>
<thead>
<tr>
<th>Eqs. (S13)–(S16)</th>
<th>(V_{OH} = 343 \pm 16.4 \text{IU/day})</th>
<th>(V_{OH} = 8110 \text{IU/day})</th>
<th>(k_{OH2} = 247 \pm 4.75 \text{pg/mL})</th>
<th>(k_{OH2} = 155 \pm 17.1 \text{ng/mL})</th>
<th>(k_{OH} = 1.01 \pm 0.0079 \text{day}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(c_{OH1} = 14.0^* \text{day}^{-1})</td>
<td>(c_{OH1} = 1.1 \pm 0.10 \text{L/IU})</td>
<td>(c_{OH2} = 0.00392 \pm 0.05 \text{L/IU})</td>
<td>(d_4 = 0.187 \pm 0.0457 \text{day})</td>
<td>(d_y = 2.00 \pm 0.249 \text{day})</td>
</tr>
<tr>
<td></td>
<td>(V_{OH} = 616 \pm 11.9 \text{IU/day})</td>
<td>(k_{OH2} = 25.8^* \text{IU/mL})</td>
<td>(k_{OH2} = 120^* \text{pg/mL})</td>
<td>(k_{OH} = 1.04 \pm 0.103 \text{day}^{-1})</td>
<td>(c_{OH1} = 8.21^* \text{day}^{-1})</td>
</tr>
<tr>
<td></td>
<td>(c_{OH1} = 130 \pm 8.61 \text{L/(ng)})</td>
<td>(c_{OH2} = 0.0602 \pm 0.0058 \text{L}/\text{pg}^2)</td>
<td>(d_{OH2} = 1.18 \pm 0.0852 \text{day})</td>
<td>(d_y = 20^* \text{day})</td>
<td>(d_y = 2.5^* \text{L})</td>
</tr>
</tbody>
</table>

The \(\beta \)’s indicate parameter values that were fixed during optimization. Some of these were taken from biological sources, others were fitted at nominal values to avoid correlations among parameters during optimization (see Section 3.6). The parameters \(c_{OH1} \) and \(c_{OH2} \) were taken from biological sources of Kohler et al. (1968) and Cobel et al. (1969). The parameter \(d_{OH2} \) was taken to be zero as a result of separate analysis of the FSH equations using time-dependent input functions for the ovarian hormones.

Table B4
Parameters for Eqs. (A1)–(A4). These parameters were obtained by using biologically appropriate magnitudes for the follicular state variables, and estimating the values for the coefficients that would achieve good fits to the data from Welt et al. (1999) for younger women. These parameter values were fixed during optimization to avoid correlations among parameters.

<table>
<thead>
<tr>
<th>Eqs. (A1)–(A4)</th>
<th>(e_0 = 3.0 \text{pg/mL})</th>
<th>(e_1 = 0.04 \text{pg/(mL mm}^2)</th>
<th>(e_2 = 0.065 \text{pg/(mL mm}^2)</th>
<th>(e_3 = 0.1 \text{pg/(mL mm}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(p_{0} = 0 \text{ng/(mg mm}^3)</td>
<td>(p_{1} = 0.0085 \text{ng/(mg mm}^3)</td>
<td>(p_{2} = 0 \text{ng/(mg mm}^3)</td>
<td>(p_{3} = 0 \text{ng/(mg mm}^3)</td>
</tr>
<tr>
<td></td>
<td>(h_0 = 0)</td>
<td>(h_1 = 0.0035 \text{IU/(mg mm}^3)</td>
<td>(h_2 = 0.0021 \text{IU/(mg mm}^3)</td>
<td>(h_3 = 0.0021 \text{IU/(mg mm}^3)</td>
</tr>
<tr>
<td></td>
<td>(j_0 = 15 \text{pg/mL})</td>
<td>(j_1 = 20.2 \text{pg/(mg mm}^3)</td>
<td>(j_2 = 0.0138 \text{pg/(mg mm}^3)</td>
<td>(j_3 = 0.0138 \text{pg/(mg mm}^3)</td>
</tr>
</tbody>
</table>

Table B5
Initial conditions used when solving the model at ages 30 and 40. Initial conditions for Primor and Primar were obtained by solving Eqs. (S1)–(S2) and (A5) from age 20 up to the required age. Initial conditions for the remaining stages were obtained for a specific age by fixing Primor and Primar, and allowing the solution to approach the stable attractor. We consider a less than 1% change in initial condition from one cycle to the next as a sign that the stable attractor has been reached. Centering the LH peak at day 14, the value of a stage at day 1 is taken to be the initial condition for that stage.

<table>
<thead>
<tr>
<th>State variable</th>
<th>Age 20</th>
<th>Age 30</th>
<th>Age 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primor</td>
<td>265,000</td>
<td>108,000</td>
<td>19,000</td>
</tr>
<tr>
<td>Primor</td>
<td>100</td>
<td>72.5</td>
<td>27.6</td>
</tr>
<tr>
<td>PrAMF</td>
<td>1.15</td>
<td>0.712</td>
<td>0.237</td>
</tr>
<tr>
<td>SmAMF</td>
<td>3.98</td>
<td>3.21</td>
<td>1.46</td>
</tr>
<tr>
<td>RSpir</td>
<td>40.4</td>
<td>37.9</td>
<td>32.2</td>
</tr>
<tr>
<td>Gf</td>
<td>53.1</td>
<td>52.9</td>
<td>55.9</td>
</tr>
<tr>
<td>DomF</td>
<td>23.3</td>
<td>23.0</td>
<td>24.3</td>
</tr>
<tr>
<td>Ont</td>
<td>16.0</td>
<td>15.6</td>
<td>16.3</td>
</tr>
<tr>
<td>Lut</td>
<td>91.3</td>
<td>88.9</td>
<td>89.9</td>
</tr>
<tr>
<td>Lut</td>
<td>320</td>
<td>313</td>
<td>312</td>
</tr>
<tr>
<td>Lut</td>
<td>438</td>
<td>429</td>
<td>426</td>
</tr>
<tr>
<td>Lut</td>
<td>362</td>
<td>355</td>
<td>352</td>
</tr>
<tr>
<td>RPh</td>
<td>78.5</td>
<td>79.5</td>
<td>80.0</td>
</tr>
<tr>
<td>LH</td>
<td>9.05</td>
<td>9.05</td>
<td>9.05</td>
</tr>
<tr>
<td>RPh</td>
<td>12.0</td>
<td>12.7</td>
<td>14.4</td>
</tr>
<tr>
<td>FSH</td>
<td>11.0</td>
<td>11.6</td>
<td>13.1</td>
</tr>
</tbody>
</table>

References

