**My current research is focused on two areas: (1) modelling the estrogen (menstrual) cycle in humans to study cycle abnormalities, and (2) the use of
stocking, harvesting and migration to control the dynamical behavior of deterministic models in population biology and genetics.
**

** Angelean O. Hendrix, Claude L. Hughes and James F. Selgrade (preprint). (2014) Modeling endocrine control of the pituitary-ovarian axis: Androgenic influence and chaotic dynamics. Bull. Math. Biology 76, 136-156. **

** Alison Margolskee and James F. Selgrade (2013). A lifelong model for the female reproductive cycle with an antimullerian hormone treatment to delay menopause. J. Theoretical Biology 326, 21-35. **

** Alison Margolskee and James F. Selgrade (2011). Dynamics and bifurcation of a model for hormonal control of the menstrual cycle with inhibin delay, Math. Biosciences 234, 95-107. **

**James F. Selgrade (2010). Bifurcation analysis of a model for hormonal regulation of the menstrual cycle, Math. Biosciences 225, 97-103. **

**James F. Selgrade, L.A. Harris and R.D. Pasteur (2009). A model for hormonal control of the menstrual cycle: Structural consistency but sensitivity with regard to data, J. Theoretical Biology 260, 572-580. **

**James F. Selgrade, Jordan W. Bostic and James H. Roberds (2009). Dynamical behavior of a discrete selection-migration model with arbitrary dominance, Jour. of Difference Equations and Appl. 15, 371-385. **

**James F. Selgrade and James H. Roberds (2007). Global attractors for a discrete selection model with periodic immigration, Jour. of Difference Equations and Appl. 13, 275-287. **

**James F. Selgrade and James H. Roberds (2005). Results on asymptotic behavior for discrete, two-patch metapopulations with density-dependent selection, Jour. of Difference Equations and Appl. 11, 459-476.**

**John E. Franke and James F. Selgrade (2003). Attractors for
discrete periodic dynamical systems, J. Math. Analysis and
Applications 286, 64-79.**

**L. Harris Clark, Paul M. Schlosser and James F. Selgrade (2003).
Multiple stable periodic solutions in a model for hormonal control of
the menstrual cycle, Bulletin of Math. Biology 65, 157-173. **

**James F. Selgrade and James H. Roberds (2001). On the structure of
attractors for discrete, periodically forced systems with applications
to population models, Physica D 158, 69-82. Reprint
**

**Paul M. Schlosser and James F. Selgrade (2000). A model of
gonadotropin regulation during the menstrual cycle in women:
Qualitative features, Environmental Health Perspectives 108(suppl 5),
873-881. **

MAA Minicourse at the New Orleans Joint Meeting, January 2007

**Title: Some Deterministic Models in Mathematical Biology and Their Simulations **

**Instructors: James F. Selgrade (North Carolina State University),
Cammey Cole (Meredith College)
and Huseyin Kocak (University of Miami)
**

** This course presented and
analyzed the Hodgkin-Huxley and FitzHugh-Nagumo models, chemostat
models, pharmacokinetics models and discrete population models. The class was conducted in
a computer lab where participants used the software Phaser to simulate model behavior.
For details see www.phaser.com .
**

** A similar MAA minicourse was held at Meredith College, March 2005.
**

Spring 2014 Courses

** For on-line math courses see: on-line math
**

MA 537-001

** Final Exam -- Monday, May 5, 8-11 am: Ch. 1-14 -- Notes on one side of paper **

MA 537-001 textbook for Spring 2014:

"A First Course in Chaotic Dynamical Systems" by R.L. Devaney

**MA 537 Course Policy and Problems # 1 - 5 **

**MA 537 Homework and Test Solutions **